Radon in water measurements by sampling with sunflower oil

IF 1.6 3区 工程技术 Q3 CHEMISTRY, INORGANIC & NUCLEAR
S. Georgiev, V. Todorov, H. Stoycheva, K. Mitev
{"title":"Radon in water measurements by sampling with sunflower oil","authors":"S. Georgiev,&nbsp;V. Todorov,&nbsp;H. Stoycheva,&nbsp;K. Mitev","doi":"10.1016/j.apradiso.2025.111752","DOIUrl":null,"url":null,"abstract":"<div><div>A novel method for measuring radon in water is proposed. This method involves sampling radon from water into sunflower oil and subsequently measuring the radon in the oil using either Cherenkov counting or Liquid Scintillation (LS) counting. The high partition coefficient of radon between oil and water enables radon preconcentration in the oil, significantly improving the Minimum Detectable Activity Concentration (MDAC) compared to direct Cherenkov or LS measurements in water. The estimated MDACs for the method are 0.20 Bq/l using Cherenkov counting and 0.04 Bq/l using gross alpha/beta LS counting.</div><div>The MDAC achieved with Cherenkov counting allows for radon-in-water measurements for the purposes of radiation protection, ecology, hydrology, and earth sciences without requiring LS cocktails.</div><div>The MDAC for LS counting facilitates radium-in-water measurements (via radon measurement) for radiation protection without chemical pretreatment of the water sample.</div><div>Additionally, the method enables direct estimation of the radon partition coefficient between water and oils. The partition coefficient of radon between sunflower oil and water at 20 °C is estimated at <em>K</em><sub><em>oil/w</em></sub> = 23.2(16).</div></div>","PeriodicalId":8096,"journal":{"name":"Applied Radiation and Isotopes","volume":"220 ","pages":"Article 111752"},"PeriodicalIF":1.6000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Radiation and Isotopes","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0969804325000971","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

A novel method for measuring radon in water is proposed. This method involves sampling radon from water into sunflower oil and subsequently measuring the radon in the oil using either Cherenkov counting or Liquid Scintillation (LS) counting. The high partition coefficient of radon between oil and water enables radon preconcentration in the oil, significantly improving the Minimum Detectable Activity Concentration (MDAC) compared to direct Cherenkov or LS measurements in water. The estimated MDACs for the method are 0.20 Bq/l using Cherenkov counting and 0.04 Bq/l using gross alpha/beta LS counting.
The MDAC achieved with Cherenkov counting allows for radon-in-water measurements for the purposes of radiation protection, ecology, hydrology, and earth sciences without requiring LS cocktails.
The MDAC for LS counting facilitates radium-in-water measurements (via radon measurement) for radiation protection without chemical pretreatment of the water sample.
Additionally, the method enables direct estimation of the radon partition coefficient between water and oils. The partition coefficient of radon between sunflower oil and water at 20 °C is estimated at Koil/w = 23.2(16).
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Radiation and Isotopes
Applied Radiation and Isotopes 工程技术-核科学技术
CiteScore
3.00
自引率
12.50%
发文量
406
审稿时长
13.5 months
期刊介绍: Applied Radiation and Isotopes provides a high quality medium for the publication of substantial, original and scientific and technological papers on the development and peaceful application of nuclear, radiation and radionuclide techniques in chemistry, physics, biochemistry, biology, medicine, security, engineering and in the earth, planetary and environmental sciences, all including dosimetry. Nuclear techniques are defined in the broadest sense and both experimental and theoretical papers are welcome. They include the development and use of α- and β-particles, X-rays and γ-rays, neutrons and other nuclear particles and radiations from all sources, including radionuclides, synchrotron sources, cyclotrons and reactors and from the natural environment. The journal aims to publish papers with significance to an international audience, containing substantial novelty and scientific impact. The Editors reserve the rights to reject, with or without external review, papers that do not meet these criteria. Papers dealing with radiation processing, i.e., where radiation is used to bring about a biological, chemical or physical change in a material, should be directed to our sister journal Radiation Physics and Chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信