Tenan Zhang , Xiang Chen , Chengcheng Tao , Haojun Huang , Zhi Luo , Mengmeng Liu , Wen Cui , Wei Wang
{"title":"Structural and mechanistic insight into the phosphorylation reaction catalyzed by mpox virus thymidine kinase","authors":"Tenan Zhang , Xiang Chen , Chengcheng Tao , Haojun Huang , Zhi Luo , Mengmeng Liu , Wen Cui , Wei Wang","doi":"10.1016/j.antiviral.2025.106125","DOIUrl":null,"url":null,"abstract":"<div><div>Mpox virus (MPXV) is the etiological agent of mpox, which is a major threat to human health. The identification of potential drug targets and the development of effective antiviral therapies are still urgently needed. The thymidine kinase (TK) encoded by MPXV initiates the deoxythymidine triphosphate (dTTP) salvage synthesis pathway and facilitates viral DNA replication. MPXV without TK presents significant replication defects. MPXV TK is also responsible for the activation of nucleos(t)ide analogs, which are an important class of antivirals. Despite its importance in the viral life cycle and antiviral development, the structure and catalytic mechanism of MPXV TK are not fully understood. Here, we determined the three-dimensional structure of an MPXV TK variant, in which the glutamic acid at position 83 was substituted with alanine. MPXV TK consists of two domains and forms a tetramer. One protomer binds dTTP with two lassos and a P-loop, while the other protomers are captured in apo-form. Mutation of residues near the dTTP-binding site significantly reduces the catalytic activity of MPXV TK, indicating the importance of these residues in substrate binding and/or catalysis. Specifically, E83 is found to play a crucial role in stabilizing dTTP and lasso II. A biochemical assay confirmed that dTTP functions as a feedback inhibitor of MPXV TK and its inhibitory potency was evaluated. These results may facilitate the discovery of specific inhibitors targeting TK to mitigate MPXV infections.</div></div>","PeriodicalId":8259,"journal":{"name":"Antiviral research","volume":"237 ","pages":"Article 106125"},"PeriodicalIF":4.5000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antiviral research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166354225000518","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Mpox virus (MPXV) is the etiological agent of mpox, which is a major threat to human health. The identification of potential drug targets and the development of effective antiviral therapies are still urgently needed. The thymidine kinase (TK) encoded by MPXV initiates the deoxythymidine triphosphate (dTTP) salvage synthesis pathway and facilitates viral DNA replication. MPXV without TK presents significant replication defects. MPXV TK is also responsible for the activation of nucleos(t)ide analogs, which are an important class of antivirals. Despite its importance in the viral life cycle and antiviral development, the structure and catalytic mechanism of MPXV TK are not fully understood. Here, we determined the three-dimensional structure of an MPXV TK variant, in which the glutamic acid at position 83 was substituted with alanine. MPXV TK consists of two domains and forms a tetramer. One protomer binds dTTP with two lassos and a P-loop, while the other protomers are captured in apo-form. Mutation of residues near the dTTP-binding site significantly reduces the catalytic activity of MPXV TK, indicating the importance of these residues in substrate binding and/or catalysis. Specifically, E83 is found to play a crucial role in stabilizing dTTP and lasso II. A biochemical assay confirmed that dTTP functions as a feedback inhibitor of MPXV TK and its inhibitory potency was evaluated. These results may facilitate the discovery of specific inhibitors targeting TK to mitigate MPXV infections.
期刊介绍:
Antiviral Research is a journal that focuses on various aspects of controlling viral infections in both humans and animals. It is a platform for publishing research reports, short communications, review articles, and commentaries. The journal covers a wide range of topics including antiviral drugs, antibodies, and host-response modifiers. These topics encompass their synthesis, in vitro and in vivo testing, as well as mechanisms of action. Additionally, the journal also publishes studies on the development of new or improved vaccines against viral infections in humans. It delves into assessing the safety of drugs and vaccines, tracking the evolution of drug or vaccine-resistant viruses, and developing effective countermeasures. Another area of interest includes the identification and validation of new drug targets. The journal further explores laboratory animal models of viral diseases, investigates the pathogenesis of viral diseases, and examines the mechanisms by which viruses avoid host immune responses.