{"title":"B4GALT5-deficient CHO-Lec2 cells expressing human α1,4-galactosyltransferase: A glycoengineered cell model for studying Shiga toxin receptors","authors":"Krzysztof Mikołajczyk","doi":"10.1016/j.bbrc.2025.151556","DOIUrl":null,"url":null,"abstract":"<div><div>Human α1,4-galactosyltransferase (A4galt) is a glycosyltransferase existing in humans as two isoforms, widespread A4galt (named A4G) and its rare variant with p.Q211E substitution (A4Gmut). Both isoforms produce Gb3 (Galα1→4Galβ1→4Glc-Cer) on glycosphingolipids and P1 glycotope (Galα1→4Galβ1→4GlcNAc-R) on glycoproteins, which serve as receptors for Shiga toxin types 1 and 2 (Stx1 and Stx2). Stx1 is bound by Gb3 and P1 glycotope, while Stx2 is recognized solely by Gb3. To elucidate the role of these receptors, CHO-Lec2 cells expressing human A4G and A4Gmut were modified by disrupting the hamster <em>B4GALT5</em> gene using CRISPR/Cas9 technology. The <em>B4GALT5</em> gene encodes β1,4-galactosyltransferase 5 (B4galt5), synthesizing lactosylceramide, the key substrate for Gb3 synthesis. Consequently, <em>B4GALT5</em>-deficient CHO-Lec2-expressing A4G and A4Gmut cells lacked Gb3 glycosphingolipid but retained the ability to synthesize glycoprotein-based P1 glycotope. Both <em>B4GALT5</em>-deficient CHO-Lec2 cells expressing A4G and A4Gmut demonstrated no binding of Stx1B and Stx2B. The cytotoxicity assay showed that <em>B4GALT5</em>-deficient CHO-Lec2 cells expressing A4G were completely resistant to Stx1 holotoxin while A4Gmut-expressing cells revealed reduced sensitivity to Stx2. The glycoengineered CHO-Lec2 cells obtained in this study provide a valuable model for studying receptors for Stxs, enabling a detailed assessment of their roles in toxin binding and cytotoxicity.</div></div>","PeriodicalId":8779,"journal":{"name":"Biochemical and biophysical research communications","volume":"754 ","pages":"Article 151556"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical and biophysical research communications","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006291X25002700","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Human α1,4-galactosyltransferase (A4galt) is a glycosyltransferase existing in humans as two isoforms, widespread A4galt (named A4G) and its rare variant with p.Q211E substitution (A4Gmut). Both isoforms produce Gb3 (Galα1→4Galβ1→4Glc-Cer) on glycosphingolipids and P1 glycotope (Galα1→4Galβ1→4GlcNAc-R) on glycoproteins, which serve as receptors for Shiga toxin types 1 and 2 (Stx1 and Stx2). Stx1 is bound by Gb3 and P1 glycotope, while Stx2 is recognized solely by Gb3. To elucidate the role of these receptors, CHO-Lec2 cells expressing human A4G and A4Gmut were modified by disrupting the hamster B4GALT5 gene using CRISPR/Cas9 technology. The B4GALT5 gene encodes β1,4-galactosyltransferase 5 (B4galt5), synthesizing lactosylceramide, the key substrate for Gb3 synthesis. Consequently, B4GALT5-deficient CHO-Lec2-expressing A4G and A4Gmut cells lacked Gb3 glycosphingolipid but retained the ability to synthesize glycoprotein-based P1 glycotope. Both B4GALT5-deficient CHO-Lec2 cells expressing A4G and A4Gmut demonstrated no binding of Stx1B and Stx2B. The cytotoxicity assay showed that B4GALT5-deficient CHO-Lec2 cells expressing A4G were completely resistant to Stx1 holotoxin while A4Gmut-expressing cells revealed reduced sensitivity to Stx2. The glycoengineered CHO-Lec2 cells obtained in this study provide a valuable model for studying receptors for Stxs, enabling a detailed assessment of their roles in toxin binding and cytotoxicity.
期刊介绍:
Biochemical and Biophysical Research Communications is the premier international journal devoted to the very rapid dissemination of timely and significant experimental results in diverse fields of biological research. The development of the "Breakthroughs and Views" section brings the minireview format to the journal, and issues often contain collections of special interest manuscripts. BBRC is published weekly (52 issues/year).Research Areas now include: Biochemistry; biophysics; cell biology; developmental biology; immunology
; molecular biology; neurobiology; plant biology and proteomics