Xiangyun Lv , Zeming Liu , Pengyuan Qi , Kang Chen
{"title":"Thermosensitive hydrogel loaded with nanozyme and BPTES for enhanced tumor catalytic therapy","authors":"Xiangyun Lv , Zeming Liu , Pengyuan Qi , Kang Chen","doi":"10.1016/j.colsurfb.2025.114600","DOIUrl":null,"url":null,"abstract":"<div><div>Single-atom enzymes (SAZ) show great promise in cancer therapy, particularly chemodynamic therapy, due to their high catalytic activity. They can increase reactive oxygen species (ROS) in tumor cells, causing cell damage and death. However, glutathione (GSH) in tumors can neutralize ROS, reducing SAZ effectiveness. Lowering GSH levels can enhance the effectiveness of SAZ in killing tumor cells, and inhibiting its synthesis at the source might be a promising approach. Glutaminase (GLS1) inhibitors like BPTES can reduce GSH by disrupting glutamine metabolism. This study develops a thermosensitive hydrogel with Fe-based SAZ and BPTES. Upon infrared laser irradiation, the hydrogel releases FeSAZ and BPTES into tumor cells. FeSAZ generates ▪OH from H<sub>2</sub>O<sub>2</sub>, while BPTES reduces glutathione (GSH) synthesis in tumor cells, weakening their defenses and enhancing the cytotoxic effects of ▪OH. This combined strategy shows strong potential for effective tumor suppression. Our strategy provides new insights into cancer treatments, potentially offering a more effective therapeutic options for patients.</div></div>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"251 ","pages":"Article 114600"},"PeriodicalIF":5.4000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces B: Biointerfaces","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927776525001079","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Single-atom enzymes (SAZ) show great promise in cancer therapy, particularly chemodynamic therapy, due to their high catalytic activity. They can increase reactive oxygen species (ROS) in tumor cells, causing cell damage and death. However, glutathione (GSH) in tumors can neutralize ROS, reducing SAZ effectiveness. Lowering GSH levels can enhance the effectiveness of SAZ in killing tumor cells, and inhibiting its synthesis at the source might be a promising approach. Glutaminase (GLS1) inhibitors like BPTES can reduce GSH by disrupting glutamine metabolism. This study develops a thermosensitive hydrogel with Fe-based SAZ and BPTES. Upon infrared laser irradiation, the hydrogel releases FeSAZ and BPTES into tumor cells. FeSAZ generates ▪OH from H2O2, while BPTES reduces glutathione (GSH) synthesis in tumor cells, weakening their defenses and enhancing the cytotoxic effects of ▪OH. This combined strategy shows strong potential for effective tumor suppression. Our strategy provides new insights into cancer treatments, potentially offering a more effective therapeutic options for patients.
期刊介绍:
Colloids and Surfaces B: Biointerfaces is an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin, having particular relevance to the medical, pharmaceutical, biotechnological, food and cosmetic fields.
Submissions that: (1) deal solely with biological phenomena and do not describe the physico-chemical or colloid-chemical background and/or mechanism of the phenomena, and (2) deal solely with colloid/interfacial phenomena and do not have appropriate biological content or relevance, are outside the scope of the journal and will not be considered for publication.
The journal publishes regular research papers, reviews, short communications and invited perspective articles, called BioInterface Perspectives. The BioInterface Perspective provide researchers the opportunity to review their own work, as well as provide insight into the work of others that inspired and influenced the author. Regular articles should have a maximum total length of 6,000 words. In addition, a (combined) maximum of 8 normal-sized figures and/or tables is allowed (so for instance 3 tables and 5 figures). For multiple-panel figures each set of two panels equates to one figure. Short communications should not exceed half of the above. It is required to give on the article cover page a short statistical summary of the article listing the total number of words and tables/figures.