Bowen Sun , Shankun Liu , Wenping Han , Fei Han , Ling Zhang , Yunhou Sun , Yong Mei
{"title":"Peridynamics-based reformulation of HJC constitutive model for concrete failure analysis under impact","authors":"Bowen Sun , Shankun Liu , Wenping Han , Fei Han , Ling Zhang , Yunhou Sun , Yong Mei","doi":"10.1016/j.ijimpeng.2025.105269","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a novel bond-based peridynamic model for failure analysis of concrete structures subjected to impact. The model characterizes the tensile response of concrete using the prototype microelastic brittle model, while the Holmquist–Johnson–Cook (HJC) constitutive model is reformulated within the framework of bond-based peridynamics to describe the compressive response. The reformulated model is rate- and pressure-dependent and accounts for strain softening due to plastic damage. A yield criterion for peridynamic bonds is introduced, and the return-mapping algorithm is employed to determine bond-force. A semi-spring contact model is utilized for contact calculation. The validity of the proposed model is verified by comparing simulation results with experimental stress–strain data. Additionally, both low- and high-speed impact tests on concrete structures are simulated. The crack morphology observed in the simulations aligns with experimental observations, indicating that the proposed model can effectively analyze the failure of concrete structures under impact.</div></div>","PeriodicalId":50318,"journal":{"name":"International Journal of Impact Engineering","volume":"201 ","pages":"Article 105269"},"PeriodicalIF":5.1000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Impact Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0734743X25000508","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a novel bond-based peridynamic model for failure analysis of concrete structures subjected to impact. The model characterizes the tensile response of concrete using the prototype microelastic brittle model, while the Holmquist–Johnson–Cook (HJC) constitutive model is reformulated within the framework of bond-based peridynamics to describe the compressive response. The reformulated model is rate- and pressure-dependent and accounts for strain softening due to plastic damage. A yield criterion for peridynamic bonds is introduced, and the return-mapping algorithm is employed to determine bond-force. A semi-spring contact model is utilized for contact calculation. The validity of the proposed model is verified by comparing simulation results with experimental stress–strain data. Additionally, both low- and high-speed impact tests on concrete structures are simulated. The crack morphology observed in the simulations aligns with experimental observations, indicating that the proposed model can effectively analyze the failure of concrete structures under impact.
期刊介绍:
The International Journal of Impact Engineering, established in 1983 publishes original research findings related to the response of structures, components and materials subjected to impact, blast and high-rate loading. Areas relevant to the journal encompass the following general topics and those associated with them:
-Behaviour and failure of structures and materials under impact and blast loading
-Systems for protection and absorption of impact and blast loading
-Terminal ballistics
-Dynamic behaviour and failure of materials including plasticity and fracture
-Stress waves
-Structural crashworthiness
-High-rate mechanical and forming processes
-Impact, blast and high-rate loading/measurement techniques and their applications