Experimental performance evaluation of a lightweight additively manufactured hydrodynamic thrust bearing

Q1 Engineering
Collier Fais , Isaiah Yasko , Muhammad Ali , Rick Walker , Joe Walker
{"title":"Experimental performance evaluation of a lightweight additively manufactured hydrodynamic thrust bearing","authors":"Collier Fais ,&nbsp;Isaiah Yasko ,&nbsp;Muhammad Ali ,&nbsp;Rick Walker ,&nbsp;Joe Walker","doi":"10.1016/j.ijlmm.2024.10.003","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, a lightweight additively manufactured (AM) fixed geometry hydrodynamic thrust bearing fabricated via laser powder bed fusion (LPBF) is experimentally compared to a traditionally manufactured cast aluminum alloy thrust bearing of similar design. The purpose of this study is to evaluate how weight-saving design features in the AM bearing affect active critical hydrodynamic performance parameters to better understand in-service viability. Under various static operating conditions, performance parameters such as hydrodynamic pressure distribution, minimum oil film thickness (MOFT), bearing temperature and increase in oil temperature are measured. Compared to the traditionally manufactured bearing, the AM bearing showed an average increase in minimum oil film thickness of 53 %, an average increase in trailing edge hydrodynamic pressure of 116 %, while exhibiting an average decrease in bearing temperature of 1 %. Experimental results are compared to numerical simulation showing reasonably good agreement.</div></div>","PeriodicalId":52306,"journal":{"name":"International Journal of Lightweight Materials and Manufacture","volume":"8 2","pages":"Pages 285-299"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Lightweight Materials and Manufacture","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588840424000945","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a lightweight additively manufactured (AM) fixed geometry hydrodynamic thrust bearing fabricated via laser powder bed fusion (LPBF) is experimentally compared to a traditionally manufactured cast aluminum alloy thrust bearing of similar design. The purpose of this study is to evaluate how weight-saving design features in the AM bearing affect active critical hydrodynamic performance parameters to better understand in-service viability. Under various static operating conditions, performance parameters such as hydrodynamic pressure distribution, minimum oil film thickness (MOFT), bearing temperature and increase in oil temperature are measured. Compared to the traditionally manufactured bearing, the AM bearing showed an average increase in minimum oil film thickness of 53 %, an average increase in trailing edge hydrodynamic pressure of 116 %, while exhibiting an average decrease in bearing temperature of 1 %. Experimental results are compared to numerical simulation showing reasonably good agreement.
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Lightweight Materials and Manufacture
International Journal of Lightweight Materials and Manufacture Engineering-Industrial and Manufacturing Engineering
CiteScore
9.90
自引率
0.00%
发文量
52
审稿时长
48 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信