Rapid crack-seal growth of Faden quartz

IF 2.6 2区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY
Estibalitz Ukar , András Fall , Stephen E. Laubach , Richard Ketcham
{"title":"Rapid crack-seal growth of Faden quartz","authors":"Estibalitz Ukar ,&nbsp;András Fall ,&nbsp;Stephen E. Laubach ,&nbsp;Richard Ketcham","doi":"10.1016/j.jsg.2025.105343","DOIUrl":null,"url":null,"abstract":"<div><div>Faden quartz is characterized by a central thread-like fluid-inclusion-rich zone surrounded by a wide, clear, faceted rim. Typically found in fractures (veins) within low-temperature metamorphic rocks, the origins of Faden quartz remain contentious. We use scanning electron microscope-based cathodoluminescence and charge contrast imaging microscopy to reveal that Faden quartz threads consist of closely spaced, narrow microfractures (gap deposits) filled with quartz, which traps fluid inclusions and is surrounded by postkinematic lateral quartz deposits. Gap deposits form by the crack-seal mechanism of sequential breakage, fracture opening, and quartz precipitation. Faden quartz forms by the same mechanism as crack-seal quartz bridges found in some fractures formed under diagenetic conditions. Most fluid inclusions trapped within crack-seal gap deposits of Faden crystals from the Zhob region, Pakistan show a narrow range of homogenization temperatures between 140 °C and 147 °C and salinities of 3.5–5.0 wt% NaCl equivalents. Spanning quartz results in fracture-normal lengths of several tens of centimeters composed of narrow (5–10 μm) crack-seal deposits. Rapid widening relative to quartz accumulation and apertures enabled these fractures to remain open and function as fluid conduits in the subsurface for millions of years.</div></div>","PeriodicalId":50035,"journal":{"name":"Journal of Structural Geology","volume":"194 ","pages":"Article 105343"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Structural Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0191814125000070","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Faden quartz is characterized by a central thread-like fluid-inclusion-rich zone surrounded by a wide, clear, faceted rim. Typically found in fractures (veins) within low-temperature metamorphic rocks, the origins of Faden quartz remain contentious. We use scanning electron microscope-based cathodoluminescence and charge contrast imaging microscopy to reveal that Faden quartz threads consist of closely spaced, narrow microfractures (gap deposits) filled with quartz, which traps fluid inclusions and is surrounded by postkinematic lateral quartz deposits. Gap deposits form by the crack-seal mechanism of sequential breakage, fracture opening, and quartz precipitation. Faden quartz forms by the same mechanism as crack-seal quartz bridges found in some fractures formed under diagenetic conditions. Most fluid inclusions trapped within crack-seal gap deposits of Faden crystals from the Zhob region, Pakistan show a narrow range of homogenization temperatures between 140 °C and 147 °C and salinities of 3.5–5.0 wt% NaCl equivalents. Spanning quartz results in fracture-normal lengths of several tens of centimeters composed of narrow (5–10 μm) crack-seal deposits. Rapid widening relative to quartz accumulation and apertures enabled these fractures to remain open and function as fluid conduits in the subsurface for millions of years.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Structural Geology
Journal of Structural Geology 地学-地球科学综合
CiteScore
6.00
自引率
19.40%
发文量
192
审稿时长
15.7 weeks
期刊介绍: The Journal of Structural Geology publishes process-oriented investigations about structural geology using appropriate combinations of analog and digital field data, seismic reflection data, satellite-derived data, geometric analysis, kinematic analysis, laboratory experiments, computer visualizations, and analogue or numerical modelling on all scales. Contributions are encouraged to draw perspectives from rheology, rock mechanics, geophysics,metamorphism, sedimentology, petroleum geology, economic geology, geodynamics, planetary geology, tectonics and neotectonics to provide a more powerful understanding of deformation processes and systems. Given the visual nature of the discipline, supplementary materials that portray the data and analysis in 3-D or quasi 3-D manners, including the use of videos, and/or graphical abstracts can significantly strengthen the impact of contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信