Active packaging film based on quince seed mucilage/alginate integrated with biosilica nanoparticles containing oak extract for extending the shelf life of meat
Fatemeh Bagri , Gholamreza Pircheraghi , Mohammad Imani , Zohreh Riahi , Masoumeh Douraghi , Jong-Whan Rhim
{"title":"Active packaging film based on quince seed mucilage/alginate integrated with biosilica nanoparticles containing oak extract for extending the shelf life of meat","authors":"Fatemeh Bagri , Gholamreza Pircheraghi , Mohammad Imani , Zohreh Riahi , Masoumeh Douraghi , Jong-Whan Rhim","doi":"10.1016/j.fpsl.2025.101466","DOIUrl":null,"url":null,"abstract":"<div><div>Straw-derived biosilica nanoparticles (SiNPs) loaded with oak fruit extract (OE@SiNP) were incorporated into quince seed mucilage/alginate (QSM/Alg) films to create eco-friendly active packaging materials. The structural and functional properties of the prepared particles, along with the effects of different concentrations of OE@SiNP on the physicochemical and functional properties of the films, were evaluated. The nanocomposite films containing 5 wt% OE@SiNP exhibited 100.0 % ABTS and 40.9 ± 0.8 % DPPH scavenging activities, in addition to UV-blocking capabilities of 96.5 ± 0.4 % for UV-A and 99.7 ± 0.1 % for UV-B. The addition of OE@SiNP enhanced the flexibility and hydrophobicity of the films. Moreover, the proposed QSM/Alg/OE@SiNP exhibited potent antibacterial activity, eradicating <em>S. aureus</em>, with the bacteria eliminated within 12 hours. As a result, minced pork was packaged with the manufactured film and stored at 4 ℃ for 20 days, during which quality changes were investigated. The experimental results demonstrated the effective preservation performance of the QSM/Alg/OE@SiNP film for packaged meat. Therefore, the developed multifunctional nanocomposite film shows significant potential for active food packaging applications.</div></div>","PeriodicalId":12377,"journal":{"name":"Food Packaging and Shelf Life","volume":"48 ","pages":"Article 101466"},"PeriodicalIF":8.5000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Packaging and Shelf Life","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214289425000365","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Straw-derived biosilica nanoparticles (SiNPs) loaded with oak fruit extract (OE@SiNP) were incorporated into quince seed mucilage/alginate (QSM/Alg) films to create eco-friendly active packaging materials. The structural and functional properties of the prepared particles, along with the effects of different concentrations of OE@SiNP on the physicochemical and functional properties of the films, were evaluated. The nanocomposite films containing 5 wt% OE@SiNP exhibited 100.0 % ABTS and 40.9 ± 0.8 % DPPH scavenging activities, in addition to UV-blocking capabilities of 96.5 ± 0.4 % for UV-A and 99.7 ± 0.1 % for UV-B. The addition of OE@SiNP enhanced the flexibility and hydrophobicity of the films. Moreover, the proposed QSM/Alg/OE@SiNP exhibited potent antibacterial activity, eradicating S. aureus, with the bacteria eliminated within 12 hours. As a result, minced pork was packaged with the manufactured film and stored at 4 ℃ for 20 days, during which quality changes were investigated. The experimental results demonstrated the effective preservation performance of the QSM/Alg/OE@SiNP film for packaged meat. Therefore, the developed multifunctional nanocomposite film shows significant potential for active food packaging applications.
期刊介绍:
Food packaging is crucial for preserving food integrity throughout the distribution chain. It safeguards against contamination by physical, chemical, and biological agents, ensuring the safety and quality of processed foods. The evolution of novel food packaging, including modified atmosphere and active packaging, has extended shelf life, enhancing convenience for consumers. Shelf life, the duration a perishable item remains suitable for sale, use, or consumption, is intricately linked with food packaging, emphasizing its role in maintaining product quality and safety.