Porcine antibodies reveal novel non-neutralizing universal epitopes on FMDV and their overlaps with neutralization sites

IF 2.4 2区 农林科学 Q3 MICROBIOLOGY
Ying Sun , Shenglin Huang , Fengjuan Li , Shulun Huang , Pinghua Li , Qiongqiong Zhao , Tao Wang , Huifang Bao , Yuanfang Fu , Pu Sun , Xingwen Bai , Hong Yuan , Xueqing Ma , Zhixun Zhao , Jing Zhang , Jian Wang , Dong Li , Qiang Zhang , Yimei Cao , Kun Li , Huiying Fan
{"title":"Porcine antibodies reveal novel non-neutralizing universal epitopes on FMDV and their overlaps with neutralization sites","authors":"Ying Sun ,&nbsp;Shenglin Huang ,&nbsp;Fengjuan Li ,&nbsp;Shulun Huang ,&nbsp;Pinghua Li ,&nbsp;Qiongqiong Zhao ,&nbsp;Tao Wang ,&nbsp;Huifang Bao ,&nbsp;Yuanfang Fu ,&nbsp;Pu Sun ,&nbsp;Xingwen Bai ,&nbsp;Hong Yuan ,&nbsp;Xueqing Ma ,&nbsp;Zhixun Zhao ,&nbsp;Jing Zhang ,&nbsp;Jian Wang ,&nbsp;Dong Li ,&nbsp;Qiang Zhang ,&nbsp;Yimei Cao ,&nbsp;Kun Li ,&nbsp;Huiying Fan","doi":"10.1016/j.vetmic.2025.110440","DOIUrl":null,"url":null,"abstract":"<div><div>Foot-and-mouth disease virus (FMDV) is highly infectious and lacks cross-protection among serotypes, with antibodies playing a key role in antiviral immunity. To map conserved epitopes on the FMDV surface that exhibit cross-serotype reactivity, we constructed a pig-specific B-cell receptor (BCR) library through single B-cell sorting and high-throughput sequencing. This led to the identification of 16 broadly reactive, non-neutralizing monoclonal antibodies (mAbs), with 10 targeting VP2 (pOTB-1, pOTB-10, pOTB-13, pOTB-33, pOTB-37, pONY-14, pONY-17, pONY-23, pONY-30, pONY-60) and 6 targeting VP3 (pOTB-6, pOTB-11, pOTB-22, pOTB-23, pONY-3, pONY-59). Among these, a novel free linear epitope was identified at the C-terminus of VP2, recognized by pOTB-1, with the minimal recognition motif \"KE.\" Key residues, T53 and W101, within the complementarity-determining region (CDR) of the pOTB-1 heavy chain, interact with the carboxyl group of the C-terminal glutamate through hydrogen bonding, contributing to the free-form nature of the epitope. Competitive enzyme-linked immunosorbent assays (cELISA) showed that most non-neutralizing antibodies (nNAbs) interfered with the binding of neutralizing antibodies B82 (site 2) and C4 (site 4), confirming the overlap between non-neutralizing and neutralizing epitopes. It has been confirmed that nNAbs mediate antiviral activity in vivo through various mechanisms, such as the formation of immune complexes. These findings reveal new epitopes on VP2 and VP3 and their spatial overlap with neutralizing sites, enhancing our understanding of FMDV immunogenicity and providing novel targets for vaccine and therapeutic development.</div></div>","PeriodicalId":23551,"journal":{"name":"Veterinary microbiology","volume":"303 ","pages":"Article 110440"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary microbiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378113525000756","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Foot-and-mouth disease virus (FMDV) is highly infectious and lacks cross-protection among serotypes, with antibodies playing a key role in antiviral immunity. To map conserved epitopes on the FMDV surface that exhibit cross-serotype reactivity, we constructed a pig-specific B-cell receptor (BCR) library through single B-cell sorting and high-throughput sequencing. This led to the identification of 16 broadly reactive, non-neutralizing monoclonal antibodies (mAbs), with 10 targeting VP2 (pOTB-1, pOTB-10, pOTB-13, pOTB-33, pOTB-37, pONY-14, pONY-17, pONY-23, pONY-30, pONY-60) and 6 targeting VP3 (pOTB-6, pOTB-11, pOTB-22, pOTB-23, pONY-3, pONY-59). Among these, a novel free linear epitope was identified at the C-terminus of VP2, recognized by pOTB-1, with the minimal recognition motif "KE." Key residues, T53 and W101, within the complementarity-determining region (CDR) of the pOTB-1 heavy chain, interact with the carboxyl group of the C-terminal glutamate through hydrogen bonding, contributing to the free-form nature of the epitope. Competitive enzyme-linked immunosorbent assays (cELISA) showed that most non-neutralizing antibodies (nNAbs) interfered with the binding of neutralizing antibodies B82 (site 2) and C4 (site 4), confirming the overlap between non-neutralizing and neutralizing epitopes. It has been confirmed that nNAbs mediate antiviral activity in vivo through various mechanisms, such as the formation of immune complexes. These findings reveal new epitopes on VP2 and VP3 and their spatial overlap with neutralizing sites, enhancing our understanding of FMDV immunogenicity and providing novel targets for vaccine and therapeutic development.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Veterinary microbiology
Veterinary microbiology 农林科学-兽医学
CiteScore
5.90
自引率
6.10%
发文量
221
审稿时长
52 days
期刊介绍: Veterinary Microbiology is concerned with microbial (bacterial, fungal, viral) diseases of domesticated vertebrate animals (livestock, companion animals, fur-bearing animals, game, poultry, fish) that supply food, other useful products or companionship. In addition, Microbial diseases of wild animals living in captivity, or as members of the feral fauna will also be considered if the infections are of interest because of their interrelation with humans (zoonoses) and/or domestic animals. Studies of antimicrobial resistance are also included, provided that the results represent a substantial advance in knowledge. Authors are strongly encouraged to read - prior to submission - the Editorials (''Scope or cope'' and ''Scope or cope II'') published previously in the journal. The Editors reserve the right to suggest submission to another journal for those papers which they feel would be more appropriate for consideration by that journal. Original research papers of high quality and novelty on aspects of control, host response, molecular biology, pathogenesis, prevention, and treatment of microbial diseases of animals are published. Papers dealing primarily with immunology, epidemiology, molecular biology and antiviral or microbial agents will only be considered if they demonstrate a clear impact on a disease. Papers focusing solely on diagnostic techniques (such as another PCR protocol or ELISA) will not be published - focus should be on a microorganism and not on a particular technique. Papers only reporting microbial sequences, transcriptomics data, or proteomics data will not be considered unless the results represent a substantial advance in knowledge. Drug trial papers will be considered if they have general application or significance. Papers on the identification of microorganisms will also be considered, but detailed taxonomic studies do not fall within the scope of the journal. Case reports will not be published, unless they have general application or contain novel aspects. Papers of geographically limited interest, which repeat what had been established elsewhere will not be considered. The readership of the journal is global.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信