A new fibre microfluidic soil pore water sampling device for NH4+-N sensing using ion-selective electrode sensors (ISEs)

Yafei Guo , Ernesto Saiz , Aleksandar Radu , Sameer Sonkusale , Sami Ullah
{"title":"A new fibre microfluidic soil pore water sampling device for NH4+-N sensing using ion-selective electrode sensors (ISEs)","authors":"Yafei Guo ,&nbsp;Ernesto Saiz ,&nbsp;Aleksandar Radu ,&nbsp;Sameer Sonkusale ,&nbsp;Sami Ullah","doi":"10.1016/j.farsys.2025.100142","DOIUrl":null,"url":null,"abstract":"<div><div>Several climate change scenarios predict extreme precipitation and irrigation, leading to saturated soil conditions. In this paper, we present a new fibre microfluidic device coupled to ion-selective electrode sensors (ISEs) to sense soil ammonium-nitrogen (NH<sub>4</sub><sup>+</sup>-N) under these saturated soil conditions. The strength of fibre microfluidics in ISE sensors lies in its ability to integrate electrochemical sensing with microfluidic fluid control in a flexible, miniaturized format. This technology enables miniaturization, flexibility, integrated microfluidic control for enhanced ionic selectivity, improved stability and longevity, as well as scalable and cost-effective manufacturing. The ISEs were applied to monitor NH<sub>4</sub><sup>+</sup>-N concentrations in soil pore water, which were drawn by the deployed fibre. The water wicked by the microfluidic fibre passed through an array of NH<sub>4</sub><sup>+</sup>-N ISE ionophores for real-time sensing over six days. The water was also collected for laboratory analysis of NH<sub>4</sub><sup>+</sup>-N through colourimetry to assess the ISE sensing performance. Our results indicate that the calibration slopes of the fibre microfluidic ISEs, ranging from 45.80 to 60.40 ​mV per decade, are generally acceptable, as the theoretical slope ideally stands at 59 ​mV per order of magnitude. Our sensor can be used to for real-time monitoring of soil NH<sub>4</sub><sup>+</sup>-N levels in fertilized grassland and arable soils over four to six days after installation. The fibre microfluidic ISE overestimated soil NH<sub>4</sub><sup>+</sup>-N concentrations, with deviations ranging from −61% to 248% in grassland soil and −80%–370% in arable soil. This significant range of deviation may be attributed to soil particles wicked by the microfluidic fibre, which subsequently adhered to the sensor membrane. The ISE readings were compared with the soil pore water NH<sub>4</sub><sup>+</sup>-N concentrations determined by colourimetry and the measured values were found to be within similar concentration ranges; however, there was high variability between ISE results and the directly measured soil pore water. Whilst real time responses are more variable, it nevertheless points to the highly dynamic nature of soil nitrogen cycling. Therefore, the technology has the potential for further miniaturization and fine tuning to assist optimizing soil fertilizer use for crop production while preventing environmental pollution through the avoidance of excessive fertilizer application.</div></div>","PeriodicalId":100522,"journal":{"name":"Farming System","volume":"3 2","pages":"Article 100142"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Farming System","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949911925000061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Several climate change scenarios predict extreme precipitation and irrigation, leading to saturated soil conditions. In this paper, we present a new fibre microfluidic device coupled to ion-selective electrode sensors (ISEs) to sense soil ammonium-nitrogen (NH4+-N) under these saturated soil conditions. The strength of fibre microfluidics in ISE sensors lies in its ability to integrate electrochemical sensing with microfluidic fluid control in a flexible, miniaturized format. This technology enables miniaturization, flexibility, integrated microfluidic control for enhanced ionic selectivity, improved stability and longevity, as well as scalable and cost-effective manufacturing. The ISEs were applied to monitor NH4+-N concentrations in soil pore water, which were drawn by the deployed fibre. The water wicked by the microfluidic fibre passed through an array of NH4+-N ISE ionophores for real-time sensing over six days. The water was also collected for laboratory analysis of NH4+-N through colourimetry to assess the ISE sensing performance. Our results indicate that the calibration slopes of the fibre microfluidic ISEs, ranging from 45.80 to 60.40 ​mV per decade, are generally acceptable, as the theoretical slope ideally stands at 59 ​mV per order of magnitude. Our sensor can be used to for real-time monitoring of soil NH4+-N levels in fertilized grassland and arable soils over four to six days after installation. The fibre microfluidic ISE overestimated soil NH4+-N concentrations, with deviations ranging from −61% to 248% in grassland soil and −80%–370% in arable soil. This significant range of deviation may be attributed to soil particles wicked by the microfluidic fibre, which subsequently adhered to the sensor membrane. The ISE readings were compared with the soil pore water NH4+-N concentrations determined by colourimetry and the measured values were found to be within similar concentration ranges; however, there was high variability between ISE results and the directly measured soil pore water. Whilst real time responses are more variable, it nevertheless points to the highly dynamic nature of soil nitrogen cycling. Therefore, the technology has the potential for further miniaturization and fine tuning to assist optimizing soil fertilizer use for crop production while preventing environmental pollution through the avoidance of excessive fertilizer application.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信