On torsion subgroups of elliptic curves over quartic, quintic and sextic number fields

IF 0.6 3区 数学 Q3 MATHEMATICS
Mustafa Umut Kazancıoğlu, Mohammad Sadek
{"title":"On torsion subgroups of elliptic curves over quartic, quintic and sextic number fields","authors":"Mustafa Umut Kazancıoğlu,&nbsp;Mohammad Sadek","doi":"10.1016/j.jnt.2025.01.017","DOIUrl":null,"url":null,"abstract":"<div><div>The list of all groups that can appear as torsion subgroups of elliptic curves over number fields of degree <em>d</em>, <span><math><mi>d</mi><mo>=</mo><mn>4</mn><mo>,</mo><mn>5</mn><mo>,</mo><mn>6</mn></math></span>, is not completely determined. However, the list of groups <span><math><msup><mrow><mi>Φ</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><mi>d</mi><mo>)</mo></math></span>, <span><math><mi>d</mi><mo>=</mo><mn>4</mn><mo>,</mo><mn>5</mn><mo>,</mo><mn>6</mn></math></span>, that can be realized as torsion subgroups for infinitely many non-isomorphic elliptic curves over these fields is known. We address the question of which torsion subgroups can arise over a given number field of degree <em>d</em>. In fact, given <span><math><mi>G</mi><mo>∈</mo><msup><mrow><mi>Φ</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><mi>d</mi><mo>)</mo></math></span> and a number field <em>K</em> of degree <em>d</em>, we give explicit criteria telling whether <em>G</em> is realized finitely or infinitely often over <em>K</em>. We also give results on the field with the smallest absolute value of its discriminant such that there exists an elliptic curve with torsion <em>G</em>. Finally, we give examples of number fields <em>K</em> of degree <em>d</em>, <span><math><mi>d</mi><mo>=</mo><mn>4</mn><mo>,</mo><mn>5</mn><mo>,</mo><mn>6</mn></math></span>, over which the Mordell-Weil rank of elliptic curves with prescribed torsion is bounded from above.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"274 ","pages":"Pages 37-55"},"PeriodicalIF":0.6000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X25000411","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The list of all groups that can appear as torsion subgroups of elliptic curves over number fields of degree d, d=4,5,6, is not completely determined. However, the list of groups Φ(d), d=4,5,6, that can be realized as torsion subgroups for infinitely many non-isomorphic elliptic curves over these fields is known. We address the question of which torsion subgroups can arise over a given number field of degree d. In fact, given GΦ(d) and a number field K of degree d, we give explicit criteria telling whether G is realized finitely or infinitely often over K. We also give results on the field with the smallest absolute value of its discriminant such that there exists an elliptic curve with torsion G. Finally, we give examples of number fields K of degree d, d=4,5,6, over which the Mordell-Weil rank of elliptic curves with prescribed torsion is bounded from above.
四次、五次和六次数域上椭圆曲线的扭转子群
在次数为d, d=4,5,6的数域中,可以作为椭圆曲线的扭转子群出现的所有群的列表是不完全确定的。然而,对于这些域上的无穷多个非同构椭圆曲线,已知可作为扭转子群的群列表Φ∞(d), d=4,5,6。我们解决的问题,扭转子组可能出现在一个给定的数字领域的学位d。事实上,鉴于G∈Φ∞(d)和程度的数域K d,我们给明确的标准告诉G是否意识到有限或无限也经常在K .我们给结果在球场上的最小绝对值判别,存在一个椭圆曲线与扭转G .最后,我们给的例子号码字段程度的K d, d = 4, 5, 6,在其上,具有规定扭量的椭圆曲线的莫德尔-韦尔秩由上有界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Number Theory
Journal of Number Theory 数学-数学
CiteScore
1.30
自引率
14.30%
发文量
122
审稿时长
16 weeks
期刊介绍: The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field. The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory. Starting in May 2019, JNT will have a new format with 3 sections: JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access. JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions. Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信