Pulse-echo-based third-order nonlinear ultrasound enhancement and its applications to microstructural characterizations in metal additive manufacturing

IF 7.9 1区 工程技术 Q1 ENGINEERING, MECHANICAL
Seong-Hyun Park
{"title":"Pulse-echo-based third-order nonlinear ultrasound enhancement and its applications to microstructural characterizations in metal additive manufacturing","authors":"Seong-Hyun Park","doi":"10.1016/j.ymssp.2025.112488","DOIUrl":null,"url":null,"abstract":"<div><div>Second harmonic-based nonlinear ultrasonics is an emerging nondestructive testing technology that has recently gained attention owing to its high sensitivity for characterizing microstructures. However, this technique operates exclusively in the through-transmission mode and cannot be applied using the pulse-echo (PE) method, which is highly suitable for field applications owing to the phase-inversion effect. To address this limitation, we develop a PE-based third-order nonlinear ultrasonic technique for characterizing the microstructures of additive manufacturing (AM) components. Experiments demonstrate that the PE-based third-harmonic technique is highly sensitive to microstructural changes, including micro-oxide inclusions and grain structures formed during AM, whereas the conventional second-harmonic technique is not. An extensive discussion, supported by numerical simulations, is provided to explain these findings. The developed technique shows potential for in-situ monitoring in various industrial fields, including AM, because it enables single-sided measurements.</div></div>","PeriodicalId":51124,"journal":{"name":"Mechanical Systems and Signal Processing","volume":"229 ","pages":"Article 112488"},"PeriodicalIF":7.9000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanical Systems and Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S088832702500189X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Second harmonic-based nonlinear ultrasonics is an emerging nondestructive testing technology that has recently gained attention owing to its high sensitivity for characterizing microstructures. However, this technique operates exclusively in the through-transmission mode and cannot be applied using the pulse-echo (PE) method, which is highly suitable for field applications owing to the phase-inversion effect. To address this limitation, we develop a PE-based third-order nonlinear ultrasonic technique for characterizing the microstructures of additive manufacturing (AM) components. Experiments demonstrate that the PE-based third-harmonic technique is highly sensitive to microstructural changes, including micro-oxide inclusions and grain structures formed during AM, whereas the conventional second-harmonic technique is not. An extensive discussion, supported by numerical simulations, is provided to explain these findings. The developed technique shows potential for in-situ monitoring in various industrial fields, including AM, because it enables single-sided measurements.
基于脉冲回波的三阶非线性超声增强及其在金属增材制造微结构表征中的应用
基于二次谐波的非线性超声技术是一种新兴的无损检测技术,由于其在表征微观结构方面的高灵敏度,最近备受关注。然而,由于相位反转效应,这种技术只能在直通传输模式下运行,无法使用脉冲回波(PE)方法,而这种方法非常适合现场应用。为了解决这一局限性,我们开发了一种基于 PE 的三阶非线性超声波技术,用于表征增材制造(AM)部件的微结构。实验证明,基于聚乙烯的三次谐波技术对微观结构变化(包括 AM 过程中形成的微氧化物夹杂物和晶粒结构)高度敏感,而传统的二次谐波技术则不敏感。为了解释这些发现,我们在数值模拟的支持下进行了广泛的讨论。所开发的技术可进行单面测量,因此具有在包括 AM 在内的各种工业领域进行原位监测的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mechanical Systems and Signal Processing
Mechanical Systems and Signal Processing 工程技术-工程:机械
CiteScore
14.80
自引率
13.10%
发文量
1183
审稿时长
5.4 months
期刊介绍: Journal Name: Mechanical Systems and Signal Processing (MSSP) Interdisciplinary Focus: Mechanical, Aerospace, and Civil Engineering Purpose:Reporting scientific advancements of the highest quality Arising from new techniques in sensing, instrumentation, signal processing, modelling, and control of dynamic systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信