Dynamic response of hybrid foundation for jack-up platform on sandy seabed under horizontal cyclic loading

IF 4.2 2区 工程技术 Q1 ENGINEERING, GEOLOGICAL
Yihan Chai , Qi Zhang , Bin Yan , Wenxuan Zhu , Guanlin Ye
{"title":"Dynamic response of hybrid foundation for jack-up platform on sandy seabed under horizontal cyclic loading","authors":"Yihan Chai ,&nbsp;Qi Zhang ,&nbsp;Bin Yan ,&nbsp;Wenxuan Zhu ,&nbsp;Guanlin Ye","doi":"10.1016/j.soildyn.2025.109336","DOIUrl":null,"url":null,"abstract":"<div><div>To address the challenges of extraction difficulties and penetration risks associated with traditional spudcan jack-up platforms, a new jack-up platform featuring a pile-leg mat foundation is proposed. The horizontal bearing capacity of hybrid foundations under the influence of dynamic loads is a critical factor that requires close attention. This research numerically examined the dynamic response of a hybrid foundation to horizontal cyclic loading on a sandy seabed. A user-defined subroutine was employed to incorporate the Cyclic Mobility (CM) model within Abaqus, facilitating the analysis of sand response under different densities. The horizontal cyclic bearing capacities of the foundation were investigated considering the effects of different loading conditions, sand density, and pile-leg penetration depth. Simulation results indicate that the cyclic loading amplitude, frequency, and load mode significantly influence the generation of soil excess pore water pressure (EPWP), subsequently affecting foundation displacement and unloading stiffness. Under cyclic loading, the loose sandy seabed shows the most pronounced fluctuations in EPWP and effective stress, leading to surface soil liquefaction. While surface soil in medium-dense and dense sand conditions remains non-liquefied, their effective stress still varies significantly. Increasing the pile-leg penetration depth enhances the foundation's horizontal bearing capacity while affecting its vertical bearing capacity slightly.</div></div>","PeriodicalId":49502,"journal":{"name":"Soil Dynamics and Earthquake Engineering","volume":"194 ","pages":"Article 109336"},"PeriodicalIF":4.2000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Dynamics and Earthquake Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0267726125001290","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

To address the challenges of extraction difficulties and penetration risks associated with traditional spudcan jack-up platforms, a new jack-up platform featuring a pile-leg mat foundation is proposed. The horizontal bearing capacity of hybrid foundations under the influence of dynamic loads is a critical factor that requires close attention. This research numerically examined the dynamic response of a hybrid foundation to horizontal cyclic loading on a sandy seabed. A user-defined subroutine was employed to incorporate the Cyclic Mobility (CM) model within Abaqus, facilitating the analysis of sand response under different densities. The horizontal cyclic bearing capacities of the foundation were investigated considering the effects of different loading conditions, sand density, and pile-leg penetration depth. Simulation results indicate that the cyclic loading amplitude, frequency, and load mode significantly influence the generation of soil excess pore water pressure (EPWP), subsequently affecting foundation displacement and unloading stiffness. Under cyclic loading, the loose sandy seabed shows the most pronounced fluctuations in EPWP and effective stress, leading to surface soil liquefaction. While surface soil in medium-dense and dense sand conditions remains non-liquefied, their effective stress still varies significantly. Increasing the pile-leg penetration depth enhances the foundation's horizontal bearing capacity while affecting its vertical bearing capacity slightly.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Soil Dynamics and Earthquake Engineering
Soil Dynamics and Earthquake Engineering 工程技术-地球科学综合
CiteScore
7.50
自引率
15.00%
发文量
446
审稿时长
8 months
期刊介绍: The journal aims to encourage and enhance the role of mechanics and other disciplines as they relate to earthquake engineering by providing opportunities for the publication of the work of applied mathematicians, engineers and other applied scientists involved in solving problems closely related to the field of earthquake engineering and geotechnical earthquake engineering. Emphasis is placed on new concepts and techniques, but case histories will also be published if they enhance the presentation and understanding of new technical concepts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信