Effect of soil-structure interaction on seismic behavior of self-centering rocking piers supported on shallow foundations

IF 4.2 2区 工程技术 Q1 ENGINEERING, GEOLOGICAL
Sepehr Rassoulpour, Mahmoud R. Shiravand, Mohammad Safi
{"title":"Effect of soil-structure interaction on seismic behavior of self-centering rocking piers supported on shallow foundations","authors":"Sepehr Rassoulpour,&nbsp;Mahmoud R. Shiravand,&nbsp;Mohammad Safi","doi":"10.1016/j.soildyn.2025.109339","DOIUrl":null,"url":null,"abstract":"<div><div>The soil structure interaction (SSI) can severely affect the behavior of a structural system. This paper examines the impact of the SSI on the seismic performance of self-centering (SC) rocking piers. Finite element (FE) models of conventional reinforced concrete (RC) piers and SC rocking piers with and without energy dissipators are built and validated. The soil-foundation-structure interaction is modeled using the beam-on-nonlinear-Winkler-foundation (BNWF) approach, capturing the nonlinear behavior of soil. This approach is also validated, comparing the settlement and moment-rotation behavior of the numerical simulation and experimental results. Various scenarios, including different foundations and soil types, are considered. Nonlinear cyclic and dynamic analyses are performed. Three sets of fragility curves are obtained, assuming maximum drift, residual drift, and foundation settlement as engineering demand parameters (EDPs). The effect of earthquake frequency content and duration are also investigated. The results show that SC rocking piers can reduce settlements, but a relatively strong foundation is needed to carry out the expected seismic performance level and effectively reduce residual drifts.</div></div>","PeriodicalId":49502,"journal":{"name":"Soil Dynamics and Earthquake Engineering","volume":"194 ","pages":"Article 109339"},"PeriodicalIF":4.2000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Dynamics and Earthquake Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0267726125001320","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The soil structure interaction (SSI) can severely affect the behavior of a structural system. This paper examines the impact of the SSI on the seismic performance of self-centering (SC) rocking piers. Finite element (FE) models of conventional reinforced concrete (RC) piers and SC rocking piers with and without energy dissipators are built and validated. The soil-foundation-structure interaction is modeled using the beam-on-nonlinear-Winkler-foundation (BNWF) approach, capturing the nonlinear behavior of soil. This approach is also validated, comparing the settlement and moment-rotation behavior of the numerical simulation and experimental results. Various scenarios, including different foundations and soil types, are considered. Nonlinear cyclic and dynamic analyses are performed. Three sets of fragility curves are obtained, assuming maximum drift, residual drift, and foundation settlement as engineering demand parameters (EDPs). The effect of earthquake frequency content and duration are also investigated. The results show that SC rocking piers can reduce settlements, but a relatively strong foundation is needed to carry out the expected seismic performance level and effectively reduce residual drifts.
土-结构相互作用对浅基础自定心摇动墩抗震行为的影响
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Soil Dynamics and Earthquake Engineering
Soil Dynamics and Earthquake Engineering 工程技术-地球科学综合
CiteScore
7.50
自引率
15.00%
发文量
446
审稿时长
8 months
期刊介绍: The journal aims to encourage and enhance the role of mechanics and other disciplines as they relate to earthquake engineering by providing opportunities for the publication of the work of applied mathematicians, engineers and other applied scientists involved in solving problems closely related to the field of earthquake engineering and geotechnical earthquake engineering. Emphasis is placed on new concepts and techniques, but case histories will also be published if they enhance the presentation and understanding of new technical concepts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信