Systematic molecular engineering of π-spacer in Indoline-based dyes with D-A'-π-A framework to enhance the intramolecular charge transfer and photovoltaic properties in DSSC and NLO applications: DFT insight

IF 2 3区 化学 Q4 CHEMISTRY, PHYSICAL
Fay Alyahya, Nuha Wazzan
{"title":"Systematic molecular engineering of π-spacer in Indoline-based dyes with D-A'-π-A framework to enhance the intramolecular charge transfer and photovoltaic properties in DSSC and NLO applications: DFT insight","authors":"Fay Alyahya,&nbsp;Nuha Wazzan","doi":"10.1016/j.chemphys.2025.112666","DOIUrl":null,"url":null,"abstract":"<div><div>This study designed 15 D-A´-π-A indoline-based dyes using four strategies: modifying the π-spacer form, introducing heteroatoms, extending π-conjugation, and altering π-spacer order relative to the WS-2 dye. Utilizing DFT and TD-DFT, we explored the geometrical, electronic, and optical properties of the dyes and their interactions with TiO<sub>2</sub>. Results showed a reduced energy gap, decreasing from 1.911 eV to a range of 1.295 eV–1.622 eV, and a redshifted absorption from 547.30 nm to 602.24 nm–739.31 nm. The introduction of a thiophene (Th) unit improved absorption, intramolecular charge transfer (ICT), and charge mobility. The D-A'-Th-π-A configuration enhanced energy gaps and non-linear optical (NLO) properties, while D-A´-π-Th-A had limitations. Notably, IND14 and IND05 exhibited promising energy gaps and NLO properties, suggesting their potential for increasing short-circuit photocurrent density, offering insights for optimizing D-A´-π-A dyes for efficient dye-sensitized solar cells (DSSCs).</div></div>","PeriodicalId":272,"journal":{"name":"Chemical Physics","volume":"594 ","pages":"Article 112666"},"PeriodicalIF":2.0000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301010425000679","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study designed 15 D-A´-π-A indoline-based dyes using four strategies: modifying the π-spacer form, introducing heteroatoms, extending π-conjugation, and altering π-spacer order relative to the WS-2 dye. Utilizing DFT and TD-DFT, we explored the geometrical, electronic, and optical properties of the dyes and their interactions with TiO2. Results showed a reduced energy gap, decreasing from 1.911 eV to a range of 1.295 eV–1.622 eV, and a redshifted absorption from 547.30 nm to 602.24 nm–739.31 nm. The introduction of a thiophene (Th) unit improved absorption, intramolecular charge transfer (ICT), and charge mobility. The D-A'-Th-π-A configuration enhanced energy gaps and non-linear optical (NLO) properties, while D-A´-π-Th-A had limitations. Notably, IND14 and IND05 exhibited promising energy gaps and NLO properties, suggesting their potential for increasing short-circuit photocurrent density, offering insights for optimizing D-A´-π-A dyes for efficient dye-sensitized solar cells (DSSCs).

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Physics
Chemical Physics 化学-物理:原子、分子和化学物理
CiteScore
4.60
自引率
4.30%
发文量
278
审稿时长
39 days
期刊介绍: Chemical Physics publishes experimental and theoretical papers on all aspects of chemical physics. In this journal, experiments are related to theory, and in turn theoretical papers are related to present or future experiments. Subjects covered include: spectroscopy and molecular structure, interacting systems, relaxation phenomena, biological systems, materials, fundamental problems in molecular reactivity, molecular quantum theory and statistical mechanics. Computational chemistry studies of routine character are not appropriate for this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信