Ping Yuan , Yunliang Cao , Yingcong Ren , Qianxia Huang , Yuanzhi Shi , Song Qin , GuoYue Liu , Ma Huang , Miao Chen
{"title":"AECII-derived miR-21a-5p exosomes alleviate HALI via targeting and regulating PGAM5-mediated necroptosis","authors":"Ping Yuan , Yunliang Cao , Yingcong Ren , Qianxia Huang , Yuanzhi Shi , Song Qin , GuoYue Liu , Ma Huang , Miao Chen","doi":"10.1016/j.cellsig.2025.111677","DOIUrl":null,"url":null,"abstract":"<div><div>Hyperoxic Acute Lung Injury (HALI) is a serious complication of prolonged high-concentration oxygen therapy, primarily leading to Acute Respiratory Distress Syndrome (ARDS), which primarily affects alveolar epithelial cells (AECs). Exosomes (Exos) derived from type II alveolar epithelial cells (AEC IIs) play a crucial role in lung protection through their contained microRNAs (miRNAs). Previous research has established miR-21a-5p as a key player in pulmonary defense mechanisms. In this study, we utilized a <em>C57BL/6</em> mouse model of HALI established by hyperoxic conditions (FiO<sub>2</sub> > 90 %) to demonstrate a gradual decrease in miR-21a-5p levels concomitant with an increase in PGAM5 levels with prolonged hyperoxia exposure. Exosomal transcriptome sequencing suggested significant downregulation of miR-21a-5p expression in hyperoxia-stimulated AECII exosomes. We employed dual-luciferase reporter assays and Chromatin Isolation by RNA Purification (ChIRP) to confirm the direct interaction between miR-21a-5p and PGAM5. AECII-derived exosomal miR-21a-5p effectively attenuated lung injury and inhibited the expression of proteins associated with PGAM5-mediated necroptosis (RIPK1, RIPK3, p-MLKL). Furthermore, <em>in vitro</em> assays using MLE-12 cells confirmed that AECII-derived exosomal miR-21a-5p intervention reversed the elevated levels of necroptotic apoptotic proteins in hyperoxia-stimulated MLE-12 cells. These findings collectively demonstrate that AECII-derived exosomal miR-21a-5p inhibits necroptosis pathway activity by modulating PGAM5, thereby exerting lung-protective effects. Therefore, exosomal miR-21a-5p may serve as a novel therapeutic target for attenuating HALI <em>via</em> modulation of the PGAM5-mediated necroptotic pathway.</div></div>","PeriodicalId":9902,"journal":{"name":"Cellular signalling","volume":"130 ","pages":"Article 111677"},"PeriodicalIF":4.4000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular signalling","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898656825000907","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Hyperoxic Acute Lung Injury (HALI) is a serious complication of prolonged high-concentration oxygen therapy, primarily leading to Acute Respiratory Distress Syndrome (ARDS), which primarily affects alveolar epithelial cells (AECs). Exosomes (Exos) derived from type II alveolar epithelial cells (AEC IIs) play a crucial role in lung protection through their contained microRNAs (miRNAs). Previous research has established miR-21a-5p as a key player in pulmonary defense mechanisms. In this study, we utilized a C57BL/6 mouse model of HALI established by hyperoxic conditions (FiO2 > 90 %) to demonstrate a gradual decrease in miR-21a-5p levels concomitant with an increase in PGAM5 levels with prolonged hyperoxia exposure. Exosomal transcriptome sequencing suggested significant downregulation of miR-21a-5p expression in hyperoxia-stimulated AECII exosomes. We employed dual-luciferase reporter assays and Chromatin Isolation by RNA Purification (ChIRP) to confirm the direct interaction between miR-21a-5p and PGAM5. AECII-derived exosomal miR-21a-5p effectively attenuated lung injury and inhibited the expression of proteins associated with PGAM5-mediated necroptosis (RIPK1, RIPK3, p-MLKL). Furthermore, in vitro assays using MLE-12 cells confirmed that AECII-derived exosomal miR-21a-5p intervention reversed the elevated levels of necroptotic apoptotic proteins in hyperoxia-stimulated MLE-12 cells. These findings collectively demonstrate that AECII-derived exosomal miR-21a-5p inhibits necroptosis pathway activity by modulating PGAM5, thereby exerting lung-protective effects. Therefore, exosomal miR-21a-5p may serve as a novel therapeutic target for attenuating HALI via modulation of the PGAM5-mediated necroptotic pathway.
期刊介绍:
Cellular Signalling publishes original research describing fundamental and clinical findings on the mechanisms, actions and structural components of cellular signalling systems in vitro and in vivo.
Cellular Signalling aims at full length research papers defining signalling systems ranging from microorganisms to cells, tissues and higher organisms.