Boron dipyrromethene fungicide for anti-microbial photodynamic therapeutics

IF 3.7 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Aoqing Jia , Min Zheng , Zhigang Xie
{"title":"Boron dipyrromethene fungicide for anti-microbial photodynamic therapeutics","authors":"Aoqing Jia ,&nbsp;Min Zheng ,&nbsp;Zhigang Xie","doi":"10.1016/j.jphotobiol.2025.113137","DOIUrl":null,"url":null,"abstract":"<div><div>Due to inadequate light transmission into the subsurface, one of the key challenges for conventional photodynamic therapy (PDT) is realizing successful treatment of deep-skin pathogenetic bacterial infectious wounds. Preparation of near-infrared (NIR) photosensitizers (PSs) with potent antibacterial activity is a potential solution to address this issue. In the present work, a boron dipyrromethene (BDP) derivative was synthesized, which had red light absorption and NIR fluorescence. Under 635 nm of irradiation, BDP could generate massive reactive oxygen species (ROS) for sterilization, which exhibited robust photodynamic antiseptic property against Gram-positive bacteria (<em>S. aureus</em>), with a minimum inhibitory concentration of only 240 nM (140 mW cm <sup>−2</sup>). More importantly, BDP was capable of efficiently suppressing the development of bacterial biofilms and even eliminate established biofilms, thereby facilitating the enhancement of sterilizing efficacy. Furthermore, the promising antibacterial capability of BDP was validated in the treatment of <em>S. aureus</em>-infected abscess. The present work presents an antibiotic-free strategy for highly effective light-triggered abscess therapy.</div></div>","PeriodicalId":16772,"journal":{"name":"Journal of photochemistry and photobiology. B, Biology","volume":"265 ","pages":"Article 113137"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of photochemistry and photobiology. B, Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1011134425000405","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Due to inadequate light transmission into the subsurface, one of the key challenges for conventional photodynamic therapy (PDT) is realizing successful treatment of deep-skin pathogenetic bacterial infectious wounds. Preparation of near-infrared (NIR) photosensitizers (PSs) with potent antibacterial activity is a potential solution to address this issue. In the present work, a boron dipyrromethene (BDP) derivative was synthesized, which had red light absorption and NIR fluorescence. Under 635 nm of irradiation, BDP could generate massive reactive oxygen species (ROS) for sterilization, which exhibited robust photodynamic antiseptic property against Gram-positive bacteria (S. aureus), with a minimum inhibitory concentration of only 240 nM (140 mW cm −2). More importantly, BDP was capable of efficiently suppressing the development of bacterial biofilms and even eliminate established biofilms, thereby facilitating the enhancement of sterilizing efficacy. Furthermore, the promising antibacterial capability of BDP was validated in the treatment of S. aureus-infected abscess. The present work presents an antibiotic-free strategy for highly effective light-triggered abscess therapy.
用于抗微生物光动力疗法的二吡咯烷酮硼杀真菌剂
由于进入皮下的光传输不足,传统光动力疗法(PDT)面临的关键挑战之一是如何成功治疗深层皮肤致病性细菌感染伤口。制备具有抗菌活性的近红外光敏剂是解决这一问题的一个潜在途径。本文合成了一种具有红光吸收和近红外荧光的二吡咯甲烷硼衍生物。在635 nm的辐照下,BDP能产生大量用于杀菌的活性氧(ROS),对革兰氏阳性菌(金黄色葡萄球菌)表现出强大的光动力杀菌性能,最低抑菌浓度仅为240 nm (140 mW cm−2)。更重要的是,BDP能够有效抑制细菌生物膜的形成,甚至消除已形成的生物膜,从而促进灭菌效果的提高。此外,在金黄色葡萄球菌感染脓肿的治疗中,BDP具有良好的抗菌能力。目前的工作提出了一种无抗生素的策略,用于高效的光触发脓肿治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.10
自引率
1.90%
发文量
161
审稿时长
37 days
期刊介绍: The Journal of Photochemistry and Photobiology B: Biology provides a forum for the publication of papers relating to the various aspects of photobiology, as well as a means for communication in this multidisciplinary field. The scope includes: - Bioluminescence - Chronobiology - DNA repair - Environmental photobiology - Nanotechnology in photobiology - Photocarcinogenesis - Photochemistry of biomolecules - Photodynamic therapy - Photomedicine - Photomorphogenesis - Photomovement - Photoreception - Photosensitization - Photosynthesis - Phototechnology - Spectroscopy of biological systems - UV and visible radiation effects and vision.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信