Pol Escudé Martinez de Castilla , Mariona Estapé Senti , Sigrun Erkens , Wytske M. van Weerden , Sander A.A. Kooijmans , Marcel H. Fens , Pieter Vader , Raymond M. Schiffelers
{"title":"Reticuloendothelial system blockade does not enhance siRNA-LNP circulation or tumor accumulation in mice","authors":"Pol Escudé Martinez de Castilla , Mariona Estapé Senti , Sigrun Erkens , Wytske M. van Weerden , Sander A.A. Kooijmans , Marcel H. Fens , Pieter Vader , Raymond M. Schiffelers","doi":"10.1016/j.ijpx.2025.100324","DOIUrl":null,"url":null,"abstract":"<div><div>One of the biggest challenges for siRNA-based therapeutics is intracellular delivery into the target cell, which can be facilitated by encapsulating siRNA in lipid nanoparticles (LNPs). In this study, we formulated D-Lin-MC3-DMA-LNPs encapsulating siRNA against the androgen receptor (AR), a key driver in prostate cancer. We effectively knocked down AR expression at both the mRNA as well as protein levels <em>in vitro</em> in AR-expressing prostate cancer cell lines. However, when moving to <em>in vivo</em> studies, siRNA-LNP efficacy is hindered by rapid clearance by the reticuloendothelial system (RES) in the liver and spleen. We evaluated whether transient RES blockade through systemic pre-administration of dextran sulfate or liposomes could extend the circulation time and enhance tumor accumulation of siRNA-LNPs in tumor-bearing mice. In two different mouse prostate cancer (PCa) xenograft models, we observed that, upon systemic administration, LNPs still predominantly accumulated in the liver and spleen, with only limited tumor uptake. Our findings demonstrate that pre-treatment with dextran sulfate or liposomes did not enhance siRNA-LNP blood circulation time or tumor accumulation <em>in vivo</em>, indicating the need for alternative strategies to enhance siRNA-LNP delivery to tumors.</div></div>","PeriodicalId":14280,"journal":{"name":"International Journal of Pharmaceutics: X","volume":"9 ","pages":"Article 100324"},"PeriodicalIF":5.2000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutics: X","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S259015672500009X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
One of the biggest challenges for siRNA-based therapeutics is intracellular delivery into the target cell, which can be facilitated by encapsulating siRNA in lipid nanoparticles (LNPs). In this study, we formulated D-Lin-MC3-DMA-LNPs encapsulating siRNA against the androgen receptor (AR), a key driver in prostate cancer. We effectively knocked down AR expression at both the mRNA as well as protein levels in vitro in AR-expressing prostate cancer cell lines. However, when moving to in vivo studies, siRNA-LNP efficacy is hindered by rapid clearance by the reticuloendothelial system (RES) in the liver and spleen. We evaluated whether transient RES blockade through systemic pre-administration of dextran sulfate or liposomes could extend the circulation time and enhance tumor accumulation of siRNA-LNPs in tumor-bearing mice. In two different mouse prostate cancer (PCa) xenograft models, we observed that, upon systemic administration, LNPs still predominantly accumulated in the liver and spleen, with only limited tumor uptake. Our findings demonstrate that pre-treatment with dextran sulfate or liposomes did not enhance siRNA-LNP blood circulation time or tumor accumulation in vivo, indicating the need for alternative strategies to enhance siRNA-LNP delivery to tumors.
期刊介绍:
International Journal of Pharmaceutics: X offers authors with high-quality research who want to publish in a gold open access journal the opportunity to make their work immediately, permanently, and freely accessible.
International Journal of Pharmaceutics: X authors will pay an article publishing charge (APC), have a choice of license options, and retain copyright. Please check the APC here. The journal is indexed in SCOPUS, PUBMED, PMC and DOAJ.
The International Journal of Pharmaceutics is the second most cited journal in the "Pharmacy & Pharmacology" category out of 358 journals, being the true home for pharmaceutical scientists concerned with the physical, chemical and biological properties of devices and delivery systems for drugs, vaccines and biologicals, including their design, manufacture and evaluation. This includes evaluation of the properties of drugs, excipients such as surfactants and polymers and novel materials. The journal has special sections on pharmaceutical nanotechnology and personalized medicines, and publishes research papers, reviews, commentaries and letters to the editor as well as special issues.