Lihua Fan, Yixin Dong, Balarabe Bilyaminu Ismail, Luyao Zhang, Yiheng Shi, Di Wu, Yongning Wu and Guoliang Li*,
{"title":"The Antimicrobial Activity and Resistance Evolution of Nanomaterials: A Review","authors":"Lihua Fan, Yixin Dong, Balarabe Bilyaminu Ismail, Luyao Zhang, Yiheng Shi, Di Wu, Yongning Wu and Guoliang Li*, ","doi":"10.1021/acsmaterialslett.4c0211310.1021/acsmaterialslett.4c02113","DOIUrl":null,"url":null,"abstract":"<p >The pervasive threat of microbial infections, compromising human health, compounded by the rising incidence of multidrug-resistant bacteria, has underscored the urgent need for the development of innovative antimicrobial strategies. Nanomaterials have garnered substantial attention as alternative antimicrobial materials, owing to their remarkable chemical and physical properties. Despite the prominent bactericidal activity of these nanomaterials, some studies have proposed otherwise, suggesting that certain nanomaterials can potentially trigger the evolution of antimicrobial resistance (AMR). Therefore, it is urgent to elucidate the underlying mechanism governing the dual characteristics of antimicrobial nanomaterials. This Review commences by providing an overview of the antimicrobial properties of three distinct nanomaterials. Subsequently, it delves into the primary inactivation mechanisms and analyzes the physicochemical factors influencing their antimicrobial activity. Concurrently, the impact of molecular initiation events on AMR evolution via nanomicrobe interactions is systematically elucidated, enabling the proposal of four guiding design principles to mitigate AMR evolution.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"7 3","pages":"1085–1111 1085–1111"},"PeriodicalIF":9.6000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Letters","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmaterialslett.4c02113","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The pervasive threat of microbial infections, compromising human health, compounded by the rising incidence of multidrug-resistant bacteria, has underscored the urgent need for the development of innovative antimicrobial strategies. Nanomaterials have garnered substantial attention as alternative antimicrobial materials, owing to their remarkable chemical and physical properties. Despite the prominent bactericidal activity of these nanomaterials, some studies have proposed otherwise, suggesting that certain nanomaterials can potentially trigger the evolution of antimicrobial resistance (AMR). Therefore, it is urgent to elucidate the underlying mechanism governing the dual characteristics of antimicrobial nanomaterials. This Review commences by providing an overview of the antimicrobial properties of three distinct nanomaterials. Subsequently, it delves into the primary inactivation mechanisms and analyzes the physicochemical factors influencing their antimicrobial activity. Concurrently, the impact of molecular initiation events on AMR evolution via nanomicrobe interactions is systematically elucidated, enabling the proposal of four guiding design principles to mitigate AMR evolution.
期刊介绍:
ACS Materials Letters is a journal that publishes high-quality and urgent papers at the forefront of fundamental and applied research in the field of materials science. It aims to bridge the gap between materials and other disciplines such as chemistry, engineering, and biology. The journal encourages multidisciplinary and innovative research that addresses global challenges. Papers submitted to ACS Materials Letters should clearly demonstrate the need for rapid disclosure of key results. The journal is interested in various areas including the design, synthesis, characterization, and evaluation of emerging materials, understanding the relationships between structure, property, and performance, as well as developing materials for applications in energy, environment, biomedical, electronics, and catalysis. The journal has a 2-year impact factor of 11.4 and is dedicated to publishing transformative materials research with fast processing times. The editors and staff of ACS Materials Letters actively participate in major scientific conferences and engage closely with readers and authors. The journal also maintains an active presence on social media to provide authors with greater visibility.