Huaxin Yang, Weifang Wang, Ping Deng* and Yan Yu*,
{"title":"Exceptional Second Near-Infrared Window Organic Photothermal Material for High-Temperature Applications Activated by a 1064 nm Laser","authors":"Huaxin Yang, Weifang Wang, Ping Deng* and Yan Yu*, ","doi":"10.1021/acsmaterialslett.4c0255210.1021/acsmaterialslett.4c02552","DOIUrl":null,"url":null,"abstract":"<p >High-temperature photothermal response functional materials are an important branch of advanced photothermal materials. However, pure organic high-temperature photothermal materials are currently relatively scarce, and their molecular design and synthesis are challenging. In this research, a highly efficient [2 + 2] cycloaddition–retroelectrocyclization reaction has been carried out between the precursor molecule containing <i>N</i>,<i>N</i>-diphenyl-4-(phenylethynyl)aniline and piperazine-2,5-dione units (TP) and the typical electron-deficient unit 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (4F-TCNQ), and a rigid and twisted high-temperature photothermal organic material (named TTP) has been successfully designed and synthesized. This material is easy to synthesize and solution-processable, has broad spectral absorption (320–1900 nm), and can be triggered for high-temperature (∼400 °C) photothermal response by a near-infrared region II (NIR-II) laser (1064 nm). It has also been successfully applied to laser ignition, the construction of high-temperature shape memory actuators, and photowelding of metals with a 1064 nm laser, demonstrating the attractive potential for high-temperature NIR-II photothermal applications.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"7 3","pages":"1060–1069 1060–1069"},"PeriodicalIF":9.6000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Letters","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmaterialslett.4c02552","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
High-temperature photothermal response functional materials are an important branch of advanced photothermal materials. However, pure organic high-temperature photothermal materials are currently relatively scarce, and their molecular design and synthesis are challenging. In this research, a highly efficient [2 + 2] cycloaddition–retroelectrocyclization reaction has been carried out between the precursor molecule containing N,N-diphenyl-4-(phenylethynyl)aniline and piperazine-2,5-dione units (TP) and the typical electron-deficient unit 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (4F-TCNQ), and a rigid and twisted high-temperature photothermal organic material (named TTP) has been successfully designed and synthesized. This material is easy to synthesize and solution-processable, has broad spectral absorption (320–1900 nm), and can be triggered for high-temperature (∼400 °C) photothermal response by a near-infrared region II (NIR-II) laser (1064 nm). It has also been successfully applied to laser ignition, the construction of high-temperature shape memory actuators, and photowelding of metals with a 1064 nm laser, demonstrating the attractive potential for high-temperature NIR-II photothermal applications.
期刊介绍:
ACS Materials Letters is a journal that publishes high-quality and urgent papers at the forefront of fundamental and applied research in the field of materials science. It aims to bridge the gap between materials and other disciplines such as chemistry, engineering, and biology. The journal encourages multidisciplinary and innovative research that addresses global challenges. Papers submitted to ACS Materials Letters should clearly demonstrate the need for rapid disclosure of key results. The journal is interested in various areas including the design, synthesis, characterization, and evaluation of emerging materials, understanding the relationships between structure, property, and performance, as well as developing materials for applications in energy, environment, biomedical, electronics, and catalysis. The journal has a 2-year impact factor of 11.4 and is dedicated to publishing transformative materials research with fast processing times. The editors and staff of ACS Materials Letters actively participate in major scientific conferences and engage closely with readers and authors. The journal also maintains an active presence on social media to provide authors with greater visibility.