Dual Type-II Colloidal Quantum Wells for Efficient Nonlinear Optical Limiting

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-03-02 DOI:10.1021/acsnano.5c00391
Junhong Yu, Emek Goksu Durmusoglu, Yunfei Ren, Wenhui Fang, Yubu Zhou, Linghao Chu, Baiquan Liu, Hilmi Volkan Demir
{"title":"Dual Type-II Colloidal Quantum Wells for Efficient Nonlinear Optical Limiting","authors":"Junhong Yu, Emek Goksu Durmusoglu, Yunfei Ren, Wenhui Fang, Yubu Zhou, Linghao Chu, Baiquan Liu, Hilmi Volkan Demir","doi":"10.1021/acsnano.5c00391","DOIUrl":null,"url":null,"abstract":"Colloidal II–VI nanocrystals have garnered significant research attention in nonlinear optical applications due to their low-cost synthesis, photophysical tunability, and ease of device integration. Herein, we report that dual-type II CdSe/CdTe/CdSe colloidal quantum wells (CQWs) with core/crown/crown structures achieve remarkable nonlinear optical limiting capabilities driven by an exceptionally large nonlinear absorption coefficient. Open aperture <i>Z</i>-scan reveals that these dual-type II CQWs exhibit a third-order nonlinear absorption coefficient of 33.1 cm/GW and an ultralow optical limiting threshold (0.71 GW/cm<sup>2</sup>), which is superior to that of any other reported colloidal semiconductor nanocrystals while also being comparable to existing two-dimensional (2D) dichalcogenide sheets. Photophysical analysis indicates that such a remarkable nonlinear optical performance in dual-type II CQWs can be primarily ascribed to the efficient excited state absorption (i.e., the sequential two-photon absorption), which benefits from the ultrafast and uniform formation of charge separation states in the dual type-II heterostructures.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"11 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c00391","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Colloidal II–VI nanocrystals have garnered significant research attention in nonlinear optical applications due to their low-cost synthesis, photophysical tunability, and ease of device integration. Herein, we report that dual-type II CdSe/CdTe/CdSe colloidal quantum wells (CQWs) with core/crown/crown structures achieve remarkable nonlinear optical limiting capabilities driven by an exceptionally large nonlinear absorption coefficient. Open aperture Z-scan reveals that these dual-type II CQWs exhibit a third-order nonlinear absorption coefficient of 33.1 cm/GW and an ultralow optical limiting threshold (0.71 GW/cm2), which is superior to that of any other reported colloidal semiconductor nanocrystals while also being comparable to existing two-dimensional (2D) dichalcogenide sheets. Photophysical analysis indicates that such a remarkable nonlinear optical performance in dual-type II CQWs can be primarily ascribed to the efficient excited state absorption (i.e., the sequential two-photon absorption), which benefits from the ultrafast and uniform formation of charge separation states in the dual type-II heterostructures.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信