Stefan Kucharski, Michael Vorochta, Lesia Piliai, Andrew M. Beale, Christopher Blackman
{"title":"Interplay between CO and Surface Lattice Oxygen Ions in the Vacancy-Mediated Response Mechanism of SnO2-Based Gas Sensors","authors":"Stefan Kucharski, Michael Vorochta, Lesia Piliai, Andrew M. Beale, Christopher Blackman","doi":"10.1021/acssensors.4c03047","DOIUrl":null,"url":null,"abstract":"Despite having been commercially available for more than half a century, conductometric gas sensors still lack a definite description of their operation mechanism, which hinders research into improving their characteristics. With the advent of operando spectroscopy comes the opportunity to elucidate their working principle by observing their surface during sensing. To that end, we have employed near-ambient pressure (NAP) XPS with simultaneous resistance measurements to correlate the macroscopic sensor response with atomistic changes to the sensor’s surface under exposure to CO, a common target gas. Our results show a clear relationship between the sensor response and the change in surface stoichiometry of SnO<sub>2</sub>, suggesting that near-surface oxygen vacancies play a vital role in the sensing mechanism, in support of a vacancy-modulated “surface conductivity” mechanism.","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"86 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssensors.4c03047","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Despite having been commercially available for more than half a century, conductometric gas sensors still lack a definite description of their operation mechanism, which hinders research into improving their characteristics. With the advent of operando spectroscopy comes the opportunity to elucidate their working principle by observing their surface during sensing. To that end, we have employed near-ambient pressure (NAP) XPS with simultaneous resistance measurements to correlate the macroscopic sensor response with atomistic changes to the sensor’s surface under exposure to CO, a common target gas. Our results show a clear relationship between the sensor response and the change in surface stoichiometry of SnO2, suggesting that near-surface oxygen vacancies play a vital role in the sensing mechanism, in support of a vacancy-modulated “surface conductivity” mechanism.
期刊介绍:
ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.