The interplay between Hebbian and homeostatic plasticity in the adult visual cortex.

IF 4.7 2区 医学 Q1 NEUROSCIENCES
Antoine Prosper, Thomas Blanchard, Claudia Lunghi
{"title":"The interplay between Hebbian and homeostatic plasticity in the adult visual cortex.","authors":"Antoine Prosper, Thomas Blanchard, Claudia Lunghi","doi":"10.1113/JP287665","DOIUrl":null,"url":null,"abstract":"<p><p>Homeostatic and Hebbian plasticity co-operate during the critical period, refining neuronal circuits; however, the interaction between these two forms of plasticity is still unclear, especially in adulthood. Here, we directly investigate this issue in adult humans using two consolidated paradigms to elicit each form of plasticity in the visual cortex: the long-term potentiation-like change of the visual evoked potential (VEP) induced by high-frequency stimulation (HFS) and the shift of ocular dominance induced by short-term monocular deprivation (MD). We tested homeostatic and Hebbian plasticity independently, then explored how they interacted by inducing them simultaneously in a group of adult healthy volunteers. We successfully induced both forms of plasticity: 60 min of MD induced a reliable change in ocular dominance and HFS reliably modulated the amplitude of the P1 component of the VEP. Importantly, we found that, across participants, homeostatic and Hebbian plasticity were negatively correlated, indicating related neural mechanisms, potentially linked to intracortical excitation/inhibition balance. On the other hand, we did not find an interaction when the two forms of plasticity were induced simultaneously. Our results indicate a largely preserved plastic potential in the visual cortex of the adult brain, for both short-term homeostatic and Hebbian plasticity. Crucially, we show for the first time a direct relationship between these two forms of plasticity in the adult human visual cortex, which could inform future research and treatment protocols for neurological diseases. KEY POINTS: Homeostatic and Hebbian plasticity co-operate during the critical period to refine neuronal circuits in the visual cortex. The interaction between these two forms of plasticity is still unknown, especially after the closure of the critical periods and in humans. We directly investigate the interplay between Hebbian and homeostatic visual plasticity in adult humans using non-invasive paradigms. We found a negative correlation between these forms of plasticity showing for the first time a direct relationship between Hebbian and homeostatic plasticity. Our results could inform future research and treatment protocols for neurological diseases.</p>","PeriodicalId":50088,"journal":{"name":"Journal of Physiology-London","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physiology-London","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1113/JP287665","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Homeostatic and Hebbian plasticity co-operate during the critical period, refining neuronal circuits; however, the interaction between these two forms of plasticity is still unclear, especially in adulthood. Here, we directly investigate this issue in adult humans using two consolidated paradigms to elicit each form of plasticity in the visual cortex: the long-term potentiation-like change of the visual evoked potential (VEP) induced by high-frequency stimulation (HFS) and the shift of ocular dominance induced by short-term monocular deprivation (MD). We tested homeostatic and Hebbian plasticity independently, then explored how they interacted by inducing them simultaneously in a group of adult healthy volunteers. We successfully induced both forms of plasticity: 60 min of MD induced a reliable change in ocular dominance and HFS reliably modulated the amplitude of the P1 component of the VEP. Importantly, we found that, across participants, homeostatic and Hebbian plasticity were negatively correlated, indicating related neural mechanisms, potentially linked to intracortical excitation/inhibition balance. On the other hand, we did not find an interaction when the two forms of plasticity were induced simultaneously. Our results indicate a largely preserved plastic potential in the visual cortex of the adult brain, for both short-term homeostatic and Hebbian plasticity. Crucially, we show for the first time a direct relationship between these two forms of plasticity in the adult human visual cortex, which could inform future research and treatment protocols for neurological diseases. KEY POINTS: Homeostatic and Hebbian plasticity co-operate during the critical period to refine neuronal circuits in the visual cortex. The interaction between these two forms of plasticity is still unknown, especially after the closure of the critical periods and in humans. We directly investigate the interplay between Hebbian and homeostatic visual plasticity in adult humans using non-invasive paradigms. We found a negative correlation between these forms of plasticity showing for the first time a direct relationship between Hebbian and homeostatic plasticity. Our results could inform future research and treatment protocols for neurological diseases.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Physiology-London
Journal of Physiology-London 医学-神经科学
CiteScore
9.70
自引率
7.30%
发文量
817
审稿时长
2 months
期刊介绍: The Journal of Physiology publishes full-length original Research Papers and Techniques for Physiology, which are short papers aimed at disseminating new techniques for physiological research. Articles solicited by the Editorial Board include Perspectives, Symposium Reports and Topical Reviews, which highlight areas of special physiological interest. CrossTalk articles are short editorial-style invited articles framing a debate between experts in the field on controversial topics. Letters to the Editor and Journal Club articles are also published. All categories of papers are subjected to peer reivew. The Journal of Physiology welcomes submitted research papers in all areas of physiology. Authors should present original work that illustrates new physiological principles or mechanisms. Papers on work at the molecular level, at the level of the cell membrane, single cells, tissues or organs and on systems physiology are all acceptable. Theoretical papers and papers that use computational models to further our understanding of physiological processes will be considered if based on experimentally derived data and if the hypothesis advanced is directly amenable to experimental testing. While emphasis is on human and mammalian physiology, work on lower vertebrate or invertebrate preparations may be suitable if it furthers the understanding of the functioning of other organisms including mammals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信