Time-consistent robust investment-reinsurance strategy with common shock dependence under CEV model.

IF 2.6 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
PLoS ONE Pub Date : 2025-02-28 eCollection Date: 2025-01-01 DOI:10.1371/journal.pone.0316649
Lu Li, Zhijian Qiu
{"title":"Time-consistent robust investment-reinsurance strategy with common shock dependence under CEV model.","authors":"Lu Li, Zhijian Qiu","doi":"10.1371/journal.pone.0316649","DOIUrl":null,"url":null,"abstract":"<p><p>This paper investigates the optimal robust equilibrium investment and reinsurance strategy in a model with common shock dependent claims for an ambiguity-averse insurer (AAI). Suppose that the insurance company can purchase proportional reinsurance whose reinsurance premium is calculated by the expected value principle to disperse risks. The ambiguity-averse insurer's wealth process have two dependent classes of insurance business and the surplus can be invested in a financial market composed of one risk-free asset and one risky asset, where the risky asset's price is characterized by the constant elasticity of variance (CEV) model. Applying the game theory framework under the mean-variance criterion, the optimal investment reinsurance problem are derived. By adopting stochastic control theory and solving the corresponding extended Hamilton-Jacobi-Bellman (HJB) equations, we obtain the robust optimal investment-reinsurance strategy and the corresponding equilibrium value function. Furthermore, some numerical examples are provided to illustrate the effects of model parameters on the optimal investment and reinsurance strategy.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"20 2","pages":"e0316649"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11870388/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0316649","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the optimal robust equilibrium investment and reinsurance strategy in a model with common shock dependent claims for an ambiguity-averse insurer (AAI). Suppose that the insurance company can purchase proportional reinsurance whose reinsurance premium is calculated by the expected value principle to disperse risks. The ambiguity-averse insurer's wealth process have two dependent classes of insurance business and the surplus can be invested in a financial market composed of one risk-free asset and one risky asset, where the risky asset's price is characterized by the constant elasticity of variance (CEV) model. Applying the game theory framework under the mean-variance criterion, the optimal investment reinsurance problem are derived. By adopting stochastic control theory and solving the corresponding extended Hamilton-Jacobi-Bellman (HJB) equations, we obtain the robust optimal investment-reinsurance strategy and the corresponding equilibrium value function. Furthermore, some numerical examples are provided to illustrate the effects of model parameters on the optimal investment and reinsurance strategy.

Abstract Image

Abstract Image

Abstract Image

CEV模型下具有共同冲击依赖的时间一致稳健投资再保险策略。
本文研究了不确定性规避保险人(AAI)在共同冲击相关索赔模型下的最优稳健均衡投资和再保险策略。假设保险公司可以购买按期望值原则计算再保险保费的比例再保险来分散风险。规避模糊性的保险公司的财富过程具有两类相互依赖的保险业务,盈余可以投资于由一种无风险资产和一种风险资产组成的金融市场,其中风险资产的价格具有恒定的方差弹性(CEV)模型。在均值-方差准则下,应用博弈论框架,导出了最优投资再保险问题。采用随机控制理论,求解相应的扩展Hamilton-Jacobi-Bellman (HJB)方程,得到稳健的最优投资再保险策略和相应的均衡值函数。最后通过数值算例说明了模型参数对最优投资和再保险策略的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
PLoS ONE
PLoS ONE 生物-生物学
CiteScore
6.20
自引率
5.40%
发文量
14242
审稿时长
3.7 months
期刊介绍: PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides: * Open-access—freely accessible online, authors retain copyright * Fast publication times * Peer review by expert, practicing researchers * Post-publication tools to indicate quality and impact * Community-based dialogue on articles * Worldwide media coverage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信