[Early diagnosis of ASD using biomarkers: a narrative review].

IF 0.6 4区 医学 Q3 MEDICINE, GENERAL & INTERNAL
Medicina-buenos Aires Pub Date : 2025-03-01
Luna Maddalon, Maria Eleonora Minissi, Mariano Alcañiz
{"title":"[Early diagnosis of ASD using biomarkers: a narrative review].","authors":"Luna Maddalon, Maria Eleonora Minissi, Mariano Alcañiz","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Autism Spectrum Disorder (ASD) encompasses a range of neurodevelopmental conditions characterized by social challenges, repetitive behaviors, and communication difficulties. While diagnosis traditionally relies on behavioral observations, new biomedical approaches, such as the Research Domain Criteria (RDoC), aim to identify biomarkers that integrate genetic, neural, and behavioral factors. Notable biomarkers include genetic variants, molecular alterations such as abnormal neurotransmitter levels, and markers associated with immune dysfunction. Brain organoids have also enabled the investigation of specific neural mechanisms. In neuroimaging, techniques such as functional magnetic resonance imaging (fMRI) and functional near-infrared spectroscopy (fNIRS) have identified atypical connectivity patterns in infants at high risk for ASD. Similarly, measures like electroencephalography (EEG) and eye tracking have revealed differences in visual attention and brain activity, while physiological indicators such as electrodermal activity (EDA) and heart rate variability (HRV) reflect sensory and autonomic dysfunctions. The use of digital biomarkers is rapidly growing, with devices like tablets and virtual reality capturing data on children's interactions. Analyzed using artificial intelligence, these data show promise for improving early ASD detection, though further validation is needed. Integrating traditional and digital approaches is essential for advancing diagnosis and intervention strategies.</p>","PeriodicalId":18419,"journal":{"name":"Medicina-buenos Aires","volume":"85 Suppl 1 ","pages":"3-8"},"PeriodicalIF":0.6000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medicina-buenos Aires","FirstCategoryId":"3","ListUrlMain":"","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

Abstract

Autism Spectrum Disorder (ASD) encompasses a range of neurodevelopmental conditions characterized by social challenges, repetitive behaviors, and communication difficulties. While diagnosis traditionally relies on behavioral observations, new biomedical approaches, such as the Research Domain Criteria (RDoC), aim to identify biomarkers that integrate genetic, neural, and behavioral factors. Notable biomarkers include genetic variants, molecular alterations such as abnormal neurotransmitter levels, and markers associated with immune dysfunction. Brain organoids have also enabled the investigation of specific neural mechanisms. In neuroimaging, techniques such as functional magnetic resonance imaging (fMRI) and functional near-infrared spectroscopy (fNIRS) have identified atypical connectivity patterns in infants at high risk for ASD. Similarly, measures like electroencephalography (EEG) and eye tracking have revealed differences in visual attention and brain activity, while physiological indicators such as electrodermal activity (EDA) and heart rate variability (HRV) reflect sensory and autonomic dysfunctions. The use of digital biomarkers is rapidly growing, with devices like tablets and virtual reality capturing data on children's interactions. Analyzed using artificial intelligence, these data show promise for improving early ASD detection, though further validation is needed. Integrating traditional and digital approaches is essential for advancing diagnosis and intervention strategies.

自闭症谱系障碍(ASD)包括一系列以社交障碍、重复行为和沟通困难为特征的神经发育疾病。传统的诊断依赖于行为观察,而新的生物医学方法,如研究领域标准(RDoC),旨在确定整合遗传、神经和行为因素的生物标志物。著名的生物标志物包括基因变异、分子改变(如神经递质水平异常)以及与免疫功能障碍相关的标志物。脑器官组织也有助于研究特定的神经机制。在神经影像学方面,功能性磁共振成像(fMRI)和功能性近红外光谱(fNIRS)等技术发现了 ASD 高危婴儿的非典型连接模式。同样,脑电图(EEG)和眼球追踪等测量方法也揭示了视觉注意力和大脑活动的差异,而皮电活动(EDA)和心率变异性(HRV)等生理指标则反映了感觉和自主神经功能障碍。数字生物标志物的使用正在迅速增长,平板电脑和虚拟现实等设备可以捕捉儿童互动的数据。通过人工智能分析,这些数据显示出改善早期 ASD 检测的前景,但还需要进一步验证。整合传统方法和数字方法对于推进诊断和干预策略至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Medicina-buenos Aires
Medicina-buenos Aires 医学-医学:内科
CiteScore
1.30
自引率
12.50%
发文量
0
审稿时长
6-12 weeks
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信