Tanushree Majumder, Bhakti Khot, Harindi Suriyaarachchi, Anagaa Nathan, Guofa Liu
{"title":"MYC regulation of the miR-92-Robo1 axis in Slit-mediated commissural axon guidance.","authors":"Tanushree Majumder, Bhakti Khot, Harindi Suriyaarachchi, Anagaa Nathan, Guofa Liu","doi":"10.1091/mbc.E24-12-0534","DOIUrl":null,"url":null,"abstract":"<p><p>In the developing spinal cord, translational repression of Robo1 expression by microRNA-92 (miR-92) in precrossing commissural axons (CAs) inhibits Slit/Robo1-mediated repulsion facilitating commissural axon projection and midline crossing; however, the regulatory mechanisms governing miR-92 expression in the developing commissural neurons are currently lacking. Here, we propose that the transcription factor MYC regulates miR-92 expression in the developing spinal cord (of either sex) to control Robo1 levels in precrossing CAs, modulating Slit/Robo1-mediated repulsion and midline crossing. MYC, miR-92, and Robo1 are differentially expressed in the developing chicken spinal cord. MYC binds to the promoter region upstream of the gga-miR-92 gene <i>in vitro</i>. MYC knockdown dramatically decreases miR-92 expression and increases chicken Robo1 (cRobo1) levels. In contrast, overexpression of MYC significantly induces miR-92 expression and reduces cRobo1 levels. MYC knockdown or overexpression results in significant inhibition or induction of miR-92 activity in the developing chicken spinal cord, respectively. Disruption of the MYC-dependent regulation of the miR-92-cRobo1 axis affects Slit2-mediated CA growth cone collapse <i>in vitro</i> and impairs CA projection and midline crossing <i>in vivo</i>. These results elucidate the role of the MYC-miR-92-cRobo1 axis in Slit2/Robo1-mediated CA repulsion and midline crossing.</p>","PeriodicalId":18735,"journal":{"name":"Molecular Biology of the Cell","volume":" ","pages":"ar50"},"PeriodicalIF":3.1000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biology of the Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1091/mbc.E24-12-0534","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In the developing spinal cord, translational repression of Robo1 expression by microRNA-92 (miR-92) in precrossing commissural axons (CAs) inhibits Slit/Robo1-mediated repulsion facilitating commissural axon projection and midline crossing; however, the regulatory mechanisms governing miR-92 expression in the developing commissural neurons are currently lacking. Here, we propose that the transcription factor MYC regulates miR-92 expression in the developing spinal cord (of either sex) to control Robo1 levels in precrossing CAs, modulating Slit/Robo1-mediated repulsion and midline crossing. MYC, miR-92, and Robo1 are differentially expressed in the developing chicken spinal cord. MYC binds to the promoter region upstream of the gga-miR-92 gene in vitro. MYC knockdown dramatically decreases miR-92 expression and increases chicken Robo1 (cRobo1) levels. In contrast, overexpression of MYC significantly induces miR-92 expression and reduces cRobo1 levels. MYC knockdown or overexpression results in significant inhibition or induction of miR-92 activity in the developing chicken spinal cord, respectively. Disruption of the MYC-dependent regulation of the miR-92-cRobo1 axis affects Slit2-mediated CA growth cone collapse in vitro and impairs CA projection and midline crossing in vivo. These results elucidate the role of the MYC-miR-92-cRobo1 axis in Slit2/Robo1-mediated CA repulsion and midline crossing.
期刊介绍:
MBoC publishes research articles that present conceptual advances of broad interest and significance within all areas of cell, molecular, and developmental biology. We welcome manuscripts that describe advances with applications across topics including but not limited to: cell growth and division; nuclear and cytoskeletal processes; membrane trafficking and autophagy; organelle biology; quantitative cell biology; physical cell biology and mechanobiology; cell signaling; stem cell biology and development; cancer biology; cellular immunology and microbial pathogenesis; cellular neurobiology; prokaryotic cell biology; and cell biology of disease.