Stub1 Acetylation by CBP/p300 Attenuates Chronic Hypoxic-driven Pulmonary Hypertension by Suppressing HIF-2α.

IF 5.9 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Amanda Czerwinski, Paul Sidlowski, Emily Mooers, Yong Liu, Ru-Jeng Teng, Kirkwood Pritchard, Xigang Jing, Suresh Kumar, Amy Y Pan, Pengyuan Liu, Girija G Konduri, Adeleye Afolayan
{"title":"Stub1 Acetylation by CBP/p300 Attenuates Chronic Hypoxic-driven Pulmonary Hypertension by Suppressing HIF-2α.","authors":"Amanda Czerwinski, Paul Sidlowski, Emily Mooers, Yong Liu, Ru-Jeng Teng, Kirkwood Pritchard, Xigang Jing, Suresh Kumar, Amy Y Pan, Pengyuan Liu, Girija G Konduri, Adeleye Afolayan","doi":"10.1165/rcmb.2024-0353OC","DOIUrl":null,"url":null,"abstract":"<p><p>Hypoxia-inducible factors (HIF-1/2) are fundamental to the development of pulmonary hypertension (PH). Prolonged hypoxia can trigger the shift from HIF-1 to HIF-2 activity, which is critical in PH progression. Ubiquitin ligases regulate HIF activity through protein degradation. However, little is known about if or how these ligases control the HIF-1/2 switch associated with PH progression. We demonstrate that STIP1 homology and U-box containing protein1 (Stub1), an E3 ubiquitin ligase, influences HIF response to hypoxia by suppressing HIF-2 and enhancing HIF-1 mRNA, protein stability, and activity. Stub1 transgenic mice exposed to prolonged hypoxia exhibited significant decreases in pulmonary vessel and right ventricular remodeling, resulting from a failure of chronic hypoxia to trigger the transition from HIF-1α to HIF-2α and activate HIF-2α. Specifically, acute hypoxia-induced the acetylation of Stub1 at lysine-287, promoting its translocation into the nucleus and selectively suppressing HIF-2 activity. Despite the deceased total Stub1 expression, the marginal increase in Stub1<sup>K287Ac</sup> levels was sufficient for suppressing chronic hypoxia-induced HIF-2 activity in Stub1 transgenic mice. Our findings established that Stub1 acetylation regulates the putative HIF-1/2α switch driving PH progression in hypoxic and pseudohypoxic conditions.</p>","PeriodicalId":7655,"journal":{"name":"American Journal of Respiratory Cell and Molecular Biology","volume":" ","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Respiratory Cell and Molecular Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1165/rcmb.2024-0353OC","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Hypoxia-inducible factors (HIF-1/2) are fundamental to the development of pulmonary hypertension (PH). Prolonged hypoxia can trigger the shift from HIF-1 to HIF-2 activity, which is critical in PH progression. Ubiquitin ligases regulate HIF activity through protein degradation. However, little is known about if or how these ligases control the HIF-1/2 switch associated with PH progression. We demonstrate that STIP1 homology and U-box containing protein1 (Stub1), an E3 ubiquitin ligase, influences HIF response to hypoxia by suppressing HIF-2 and enhancing HIF-1 mRNA, protein stability, and activity. Stub1 transgenic mice exposed to prolonged hypoxia exhibited significant decreases in pulmonary vessel and right ventricular remodeling, resulting from a failure of chronic hypoxia to trigger the transition from HIF-1α to HIF-2α and activate HIF-2α. Specifically, acute hypoxia-induced the acetylation of Stub1 at lysine-287, promoting its translocation into the nucleus and selectively suppressing HIF-2 activity. Despite the deceased total Stub1 expression, the marginal increase in Stub1K287Ac levels was sufficient for suppressing chronic hypoxia-induced HIF-2 activity in Stub1 transgenic mice. Our findings established that Stub1 acetylation regulates the putative HIF-1/2α switch driving PH progression in hypoxic and pseudohypoxic conditions.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.20
自引率
3.10%
发文量
370
审稿时长
3-8 weeks
期刊介绍: The American Journal of Respiratory Cell and Molecular Biology publishes papers that report significant and original observations in the area of pulmonary biology. The focus of the Journal includes, but is not limited to, cellular, biochemical, molecular, developmental, genetic, and immunologic studies of lung cells and molecules.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信