Effects of Polyacrylic Acid with Different Molecular Weights on Stress Generation through Regulating the Growth of Calcium Carbonate within Collagen.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
ACS Applied Bio Materials Pub Date : 2025-03-17 Epub Date: 2025-02-28 DOI:10.1021/acsabm.4c01878
Qianshen Tang, Jiawei Nie, Weijian Fang, Hao Xie, Weimin Wang, Hao Wang, Hang Ping, Bin Li, Zhengyi Fu
{"title":"Effects of Polyacrylic Acid with Different Molecular Weights on Stress Generation through Regulating the Growth of Calcium Carbonate within Collagen.","authors":"Qianshen Tang, Jiawei Nie, Weijian Fang, Hao Xie, Weimin Wang, Hao Wang, Hang Ping, Bin Li, Zhengyi Fu","doi":"10.1021/acsabm.4c01878","DOIUrl":null,"url":null,"abstract":"<p><p>Mineralized collagen fibrils are the building blocks of bone, and the mineralization of collagen fibrils is generally regulated by noncollagenous proteins (NCPs). However, the functions of NCPs are difficult to investigate in vivo. Here, we use poly(acrylic acid) (PAA) with different molecular weights (5, 50, 450, and 4000 kDa) as analogs of NCPs and explore their effects on collagen mineralization in vitro. All the PAA molecules can promote the intrafibrillar mineralization of calcium carbonate (CaCO<sub>3</sub>) following these steps: the precursors infiltrate the gap zones of collagen, and transform into organized calcite nanocrystals within collagen. An increase in molecular weight significantly accelerates the mineralization rate of collagen films, approximately 0.67 μm min<sup>-1</sup> at 4000 kDa, four times that of 5 kDa (0.16 μm min<sup>-1</sup>). However, the generation of contractile stress via intrafibrillar mineralization in tendons exhibits a contrary tendency. It reaches 24.2 MPa at 5 kDa, much higher than that of 4000 kDa (8.3 MPa), due to rapid mineralization causing severe extrafibrillar precipitation around the tendon. The controllable mineralization of collagen matrices may inspire the development of bone repair and regeneration in the future.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":"2386-2396"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.4c01878","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Mineralized collagen fibrils are the building blocks of bone, and the mineralization of collagen fibrils is generally regulated by noncollagenous proteins (NCPs). However, the functions of NCPs are difficult to investigate in vivo. Here, we use poly(acrylic acid) (PAA) with different molecular weights (5, 50, 450, and 4000 kDa) as analogs of NCPs and explore their effects on collagen mineralization in vitro. All the PAA molecules can promote the intrafibrillar mineralization of calcium carbonate (CaCO3) following these steps: the precursors infiltrate the gap zones of collagen, and transform into organized calcite nanocrystals within collagen. An increase in molecular weight significantly accelerates the mineralization rate of collagen films, approximately 0.67 μm min-1 at 4000 kDa, four times that of 5 kDa (0.16 μm min-1). However, the generation of contractile stress via intrafibrillar mineralization in tendons exhibits a contrary tendency. It reaches 24.2 MPa at 5 kDa, much higher than that of 4000 kDa (8.3 MPa), due to rapid mineralization causing severe extrafibrillar precipitation around the tendon. The controllable mineralization of collagen matrices may inspire the development of bone repair and regeneration in the future.

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊介绍: ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信