Chernoff’s product formula: Semigroup approximations with non-uniform time intervals

IF 0.8 Q2 MATHEMATICS
József Zsolt Bernád, Andrew B. Frigyik
{"title":"Chernoff’s product formula: Semigroup approximations with non-uniform time intervals","authors":"József Zsolt Bernád,&nbsp;Andrew B. Frigyik","doi":"10.1007/s43036-025-00428-y","DOIUrl":null,"url":null,"abstract":"<div><p>Often, when we consider the time evolution of a system, we resort to approximation: Instead of calculating the exact orbit, we divide the time interval in question into uniform segments. Chernoff’s results in this direction provide us with a general approximation scheme. There are situations when we need to break the interval into uneven pieces. In this paper, we explore alternative conditions to the one found by Smolyanov <i>et al</i>. such that Chernoff’s original result can be extended to unevenly distributed time intervals. Two applications concerning the foundations of quantum mechanics and the central limit theorem are presented.</p></div>","PeriodicalId":44371,"journal":{"name":"Advances in Operator Theory","volume":"10 2","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43036-025-00428-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Operator Theory","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43036-025-00428-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Often, when we consider the time evolution of a system, we resort to approximation: Instead of calculating the exact orbit, we divide the time interval in question into uniform segments. Chernoff’s results in this direction provide us with a general approximation scheme. There are situations when we need to break the interval into uneven pieces. In this paper, we explore alternative conditions to the one found by Smolyanov et al. such that Chernoff’s original result can be extended to unevenly distributed time intervals. Two applications concerning the foundations of quantum mechanics and the central limit theorem are presented.

Chernoff乘积公式:具有非均匀时间间隔的半群近似
通常,当我们考虑系统的时间演化时,我们采用近似方法:我们不计算精确的轨道,而是将所讨论的时间间隔划分为均匀的段。Chernoff在这个方向上的结果为我们提供了一个一般的近似格式。在某些情况下,我们需要将间隔分割成不均匀的片段。在本文中,我们探索了Smolyanov等人发现的替代条件,使Chernoff的原始结果可以推广到不均匀分布的时间区间。介绍了量子力学基础和中心极限定理的两个应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
55
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信