Aberrant DNA methylation as a key modulator of cell death pathways: insights into cancer progression and other diseases

IF 3.9 4区 生物学 Q1 GENETICS & HEREDITY
Ambreen Zahoor, Rafia Khazer, Insha Mehraj, Ubaid Gani, Falah Fayaz, Firdous A. Khanday, Sahar Saleem Bhat
{"title":"Aberrant DNA methylation as a key modulator of cell death pathways: insights into cancer progression and other diseases","authors":"Ambreen Zahoor,&nbsp;Rafia Khazer,&nbsp;Insha Mehraj,&nbsp;Ubaid Gani,&nbsp;Falah Fayaz,&nbsp;Firdous A. Khanday,&nbsp;Sahar Saleem Bhat","doi":"10.1007/s10142-025-01552-x","DOIUrl":null,"url":null,"abstract":"<div><p>Cell death plays a significant role in the physiology of all living organisms, and its disruption is the underlying cause of various diseases. Previously, it was assumed that apoptosis and necrosis were the only means of cell death. Recent discoveries of alternative cell death pathways highlighted a complicated interplay between cell death regulation and its role in numerous human pathologies. DNA methylation is a universal epigenetic mechanism characterized by the covalent addition of a methyl group to cytosine in CpG dinucleotides. Alterations in DNA methylation patterns lead to the dysregulation of multiple cell death pathways. DNA methylome studies on cell death pathways have improved our understanding of the mechanism of various types of cell death, such as apoptosis, pyroptosis, necroptosis, ferroptosis, anoikis, autophagy, and cuproptosis. The irregular DNA methylation patterns of genes encoding proteins linked to multiple cell death pathways could underlie resistance to cell death. Dysregulation of cell death is linked to ailments in humans, such as cancer. However, unlike genetic alterations, DNA methylation is reversible, making it extremely interesting for therapeutics considering the potential use of DNA methyltransferase inhibitors. Furthermore, tumor microenvironment and genetic heterogeneity of cancers may influence the methylation-dependent regulation of cell death, contributing to tumor progression and therapeutic resistance. Understanding how DNA methylation influences cell death pathways may illuminate the underlying causes of cancer. This review explores the significance of the DNA methylation patterns of key genes involved in cell death pathways, emphasizing their connections and identifying potential gaps that could be exploited for developing epigenetic therapies targeting cancer.</p></div>","PeriodicalId":574,"journal":{"name":"Functional & Integrative Genomics","volume":"25 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional & Integrative Genomics","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10142-025-01552-x","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Cell death plays a significant role in the physiology of all living organisms, and its disruption is the underlying cause of various diseases. Previously, it was assumed that apoptosis and necrosis were the only means of cell death. Recent discoveries of alternative cell death pathways highlighted a complicated interplay between cell death regulation and its role in numerous human pathologies. DNA methylation is a universal epigenetic mechanism characterized by the covalent addition of a methyl group to cytosine in CpG dinucleotides. Alterations in DNA methylation patterns lead to the dysregulation of multiple cell death pathways. DNA methylome studies on cell death pathways have improved our understanding of the mechanism of various types of cell death, such as apoptosis, pyroptosis, necroptosis, ferroptosis, anoikis, autophagy, and cuproptosis. The irregular DNA methylation patterns of genes encoding proteins linked to multiple cell death pathways could underlie resistance to cell death. Dysregulation of cell death is linked to ailments in humans, such as cancer. However, unlike genetic alterations, DNA methylation is reversible, making it extremely interesting for therapeutics considering the potential use of DNA methyltransferase inhibitors. Furthermore, tumor microenvironment and genetic heterogeneity of cancers may influence the methylation-dependent regulation of cell death, contributing to tumor progression and therapeutic resistance. Understanding how DNA methylation influences cell death pathways may illuminate the underlying causes of cancer. This review explores the significance of the DNA methylation patterns of key genes involved in cell death pathways, emphasizing their connections and identifying potential gaps that could be exploited for developing epigenetic therapies targeting cancer.

DNA甲基化异常是细胞死亡通路的关键调节因子:对癌症进展和其他疾病的启示
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.50
自引率
3.40%
发文量
92
审稿时长
2 months
期刊介绍: Functional & Integrative Genomics is devoted to large-scale studies of genomes and their functions, including systems analyses of biological processes. The journal will provide the research community an integrated platform where researchers can share, review and discuss their findings on important biological questions that will ultimately enable us to answer the fundamental question: How do genomes work?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信