Tuo Zhang , Ying Bi , Jing Liang , Bing Xue , Mengjie Zhang
{"title":"Multi-objective genetic programming based on decomposition for feature learning in image classification","authors":"Tuo Zhang , Ying Bi , Jing Liang , Bing Xue , Mengjie Zhang","doi":"10.1016/j.swevo.2025.101875","DOIUrl":null,"url":null,"abstract":"<div><div>Image classification presents a challenge due to its high dimensionality and extensive variations. Feature learning is a powerful method in addressing this challenge, constituting a multi-objective problem aimed at maximizing classification accuracy and minimizing the number of learned features. A few multi-objective genetic programming (MOGP) methods have been proposed to optimize these two objectives, simultaneously. However, existing MOGP methods ignore the characteristics of feature learning tasks. Therefore, this work proposes a decomposition-based MOGP approach with a global replacement strategy for feature learning in data-efficient image classification. To handle the different value ranges of the two objectives, a transformation function is designed to uniform the range of the number of learned features. In addition, a preference-based decomposition strategy is proposed to address the preference for the objective of classification accuracy. The proposed approach is compared with existing MOGP methods for feature learning on five different image classification datasets with different numbers of training images. The experimental results demonstrate the effectiveness of the proposed approach by achieving better HVs than or comparable to the existing MOGP methods in at least 13 out of 20 cases and classification accuracy significantly better than a popular neural architecture search method in all cases.</div></div>","PeriodicalId":48682,"journal":{"name":"Swarm and Evolutionary Computation","volume":"94 ","pages":"Article 101875"},"PeriodicalIF":8.2000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Swarm and Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210650225000331","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Image classification presents a challenge due to its high dimensionality and extensive variations. Feature learning is a powerful method in addressing this challenge, constituting a multi-objective problem aimed at maximizing classification accuracy and minimizing the number of learned features. A few multi-objective genetic programming (MOGP) methods have been proposed to optimize these two objectives, simultaneously. However, existing MOGP methods ignore the characteristics of feature learning tasks. Therefore, this work proposes a decomposition-based MOGP approach with a global replacement strategy for feature learning in data-efficient image classification. To handle the different value ranges of the two objectives, a transformation function is designed to uniform the range of the number of learned features. In addition, a preference-based decomposition strategy is proposed to address the preference for the objective of classification accuracy. The proposed approach is compared with existing MOGP methods for feature learning on five different image classification datasets with different numbers of training images. The experimental results demonstrate the effectiveness of the proposed approach by achieving better HVs than or comparable to the existing MOGP methods in at least 13 out of 20 cases and classification accuracy significantly better than a popular neural architecture search method in all cases.
期刊介绍:
Swarm and Evolutionary Computation is a pioneering peer-reviewed journal focused on the latest research and advancements in nature-inspired intelligent computation using swarm and evolutionary algorithms. It covers theoretical, experimental, and practical aspects of these paradigms and their hybrids, promoting interdisciplinary research. The journal prioritizes the publication of high-quality, original articles that push the boundaries of evolutionary computation and swarm intelligence. Additionally, it welcomes survey papers on current topics and novel applications. Topics of interest include but are not limited to: Genetic Algorithms, and Genetic Programming, Evolution Strategies, and Evolutionary Programming, Differential Evolution, Artificial Immune Systems, Particle Swarms, Ant Colony, Bacterial Foraging, Artificial Bees, Fireflies Algorithm, Harmony Search, Artificial Life, Digital Organisms, Estimation of Distribution Algorithms, Stochastic Diffusion Search, Quantum Computing, Nano Computing, Membrane Computing, Human-centric Computing, Hybridization of Algorithms, Memetic Computing, Autonomic Computing, Self-organizing systems, Combinatorial, Discrete, Binary, Constrained, Multi-objective, Multi-modal, Dynamic, and Large-scale Optimization.