H.Y. Peng , Y.J. Chu , H.F. Lam , H.J. Liu , S.Y. Sun
{"title":"Static aerodynamic analysis of bio-inspired wind turbine efficiency: Modeling Borneo camphor seed blade designs and their parallel plate arrangements","authors":"H.Y. Peng , Y.J. Chu , H.F. Lam , H.J. Liu , S.Y. Sun","doi":"10.1016/j.enconman.2025.119681","DOIUrl":null,"url":null,"abstract":"<div><div>Inspired by the rotating descent of the Borneo camphor seed, this study employs its cambered wing sections for turbine blade design, modeled using computational fluid dynamics simulations to predict power and torque. In phase one, five types of seed’s wings are modeled under varying fold axis and fold angle configurations. The results identify that wing type 3 exhibits the highest peak power coefficient (0.4328) and torque (2.1310 Nm), leading to its selection for phase two. This phase involves designing flat-plate blade counterparts with varying fold numbers and different levels of fold axis and fold angle to implement the seed’s natural geometry in a cost-effective manner. The results demonstrate that the four-fold configuration achieved a high peak power coefficient of 0.3637, closely followed by the two-fold configuration at 0.3510, indicating a minimal performance difference. This indicates that the increase of fold numbers makes peak power coefficient converge to a maximum value. The two-folds design, therefore, emerges as a practical, cost-efficient option for such bio-inspired wind turbines. The findings of phase one and phase two indicate that both cambered and flat-plate biomimetic models are viable and competitive in the wind turbine industry.</div></div>","PeriodicalId":11664,"journal":{"name":"Energy Conversion and Management","volume":"331 ","pages":"Article 119681"},"PeriodicalIF":9.9000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Management","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196890425002043","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Inspired by the rotating descent of the Borneo camphor seed, this study employs its cambered wing sections for turbine blade design, modeled using computational fluid dynamics simulations to predict power and torque. In phase one, five types of seed’s wings are modeled under varying fold axis and fold angle configurations. The results identify that wing type 3 exhibits the highest peak power coefficient (0.4328) and torque (2.1310 Nm), leading to its selection for phase two. This phase involves designing flat-plate blade counterparts with varying fold numbers and different levels of fold axis and fold angle to implement the seed’s natural geometry in a cost-effective manner. The results demonstrate that the four-fold configuration achieved a high peak power coefficient of 0.3637, closely followed by the two-fold configuration at 0.3510, indicating a minimal performance difference. This indicates that the increase of fold numbers makes peak power coefficient converge to a maximum value. The two-folds design, therefore, emerges as a practical, cost-efficient option for such bio-inspired wind turbines. The findings of phase one and phase two indicate that both cambered and flat-plate biomimetic models are viable and competitive in the wind turbine industry.
期刊介绍:
The journal Energy Conversion and Management provides a forum for publishing original contributions and comprehensive technical review articles of interdisciplinary and original research on all important energy topics.
The topics considered include energy generation, utilization, conversion, storage, transmission, conservation, management and sustainability. These topics typically involve various types of energy such as mechanical, thermal, nuclear, chemical, electromagnetic, magnetic and electric. These energy types cover all known energy resources, including renewable resources (e.g., solar, bio, hydro, wind, geothermal and ocean energy), fossil fuels and nuclear resources.