Consistency-based diagnosis using data-driven residuals and limited training data

IF 5.4 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Arman Mohammadi, Mattias Krysander, Daniel Jung
{"title":"Consistency-based diagnosis using data-driven residuals and limited training data","authors":"Arman Mohammadi,&nbsp;Mattias Krysander,&nbsp;Daniel Jung","doi":"10.1016/j.conengprac.2025.106283","DOIUrl":null,"url":null,"abstract":"<div><div>Effective fault diagnosis is crucial for improving the durability and reliability of automotive systems. Developing a diagnostic system with desirable fault isolability requires an accurate model and/or representative training data covering all possible faults. One promising approach involves using physics-based neural network residuals, known as grey-box models. These networks, designed to represent the system’s nominal behavior and trained on fault-free data, are particularly advantageous when training data from faults are scarce. By incorporating causal relationships derived from physical insight, grey-box models retain the structural fault sensitivity of model-based residuals, enabling consistency-based diagnosis decision logic. However, despite their high accuracy in supervised learning benchmarks, neural networks often struggle with misclassification due to out of distribution data, a significant concern in diagnostic applications where false alarms are costly. This study highlights the importance of uncertainty quantification in neural network-based regression models and examines the interplay between different types of uncertainty in diagnostics. To address both epistemic and aleatoric uncertainties and achieve desirable fault isolation, the study applies adaptive thresholds and a measure for testing the validity of the residuals. Additionally, it proposes a consistency-based diagnosis framework using data-driven residuals, with its effectiveness demonstrated on an aftertreatment system of a heavy-duty truck under various drive cycles and fault scenarios.</div></div>","PeriodicalId":50615,"journal":{"name":"Control Engineering Practice","volume":"159 ","pages":"Article 106283"},"PeriodicalIF":5.4000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Control Engineering Practice","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967066125000462","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Effective fault diagnosis is crucial for improving the durability and reliability of automotive systems. Developing a diagnostic system with desirable fault isolability requires an accurate model and/or representative training data covering all possible faults. One promising approach involves using physics-based neural network residuals, known as grey-box models. These networks, designed to represent the system’s nominal behavior and trained on fault-free data, are particularly advantageous when training data from faults are scarce. By incorporating causal relationships derived from physical insight, grey-box models retain the structural fault sensitivity of model-based residuals, enabling consistency-based diagnosis decision logic. However, despite their high accuracy in supervised learning benchmarks, neural networks often struggle with misclassification due to out of distribution data, a significant concern in diagnostic applications where false alarms are costly. This study highlights the importance of uncertainty quantification in neural network-based regression models and examines the interplay between different types of uncertainty in diagnostics. To address both epistemic and aleatoric uncertainties and achieve desirable fault isolation, the study applies adaptive thresholds and a measure for testing the validity of the residuals. Additionally, it proposes a consistency-based diagnosis framework using data-driven residuals, with its effectiveness demonstrated on an aftertreatment system of a heavy-duty truck under various drive cycles and fault scenarios.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Control Engineering Practice
Control Engineering Practice 工程技术-工程:电子与电气
CiteScore
9.20
自引率
12.20%
发文量
183
审稿时长
44 days
期刊介绍: Control Engineering Practice strives to meet the needs of industrial practitioners and industrially related academics and researchers. It publishes papers which illustrate the direct application of control theory and its supporting tools in all possible areas of automation. As a result, the journal only contains papers which can be considered to have made significant contributions to the application of advanced control techniques. It is normally expected that practical results should be included, but where simulation only studies are available, it is necessary to demonstrate that the simulation model is representative of a genuine application. Strictly theoretical papers will find a more appropriate home in Control Engineering Practice''s sister publication, Automatica. It is also expected that papers are innovative with respect to the state of the art and are sufficiently detailed for a reader to be able to duplicate the main results of the paper (supplementary material, including datasets, tables, code and any relevant interactive material can be made available and downloaded from the website). The benefits of the presented methods must be made very clear and the new techniques must be compared and contrasted with results obtained using existing methods. Moreover, a thorough analysis of failures that may happen in the design process and implementation can also be part of the paper. The scope of Control Engineering Practice matches the activities of IFAC. Papers demonstrating the contribution of automation and control in improving the performance, quality, productivity, sustainability, resource and energy efficiency, and the manageability of systems and processes for the benefit of mankind and are relevant to industrial practitioners are most welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信