RANS investigation of incoming vortex on the tip leakage vortex breakdown in an aspirated compressor cascade

IF 2.6 3区 工程技术 Q2 ENGINEERING, MECHANICAL
Xi Gao, Zhiyuan Cao, Bo Liu
{"title":"RANS investigation of incoming vortex on the tip leakage vortex breakdown in an aspirated compressor cascade","authors":"Xi Gao,&nbsp;Zhiyuan Cao,&nbsp;Bo Liu","doi":"10.1016/j.ijheatfluidflow.2025.109796","DOIUrl":null,"url":null,"abstract":"<div><div>Boundary layer suction is an efficient method for mitigating flow separation and enhancing the performance of a highly loaded compressor cascade. Nevertheless, in a compressor cascade with tip clearance, the high adverse-pressure gradient induced by suction can exert a negative impact on tip leakage vortex (TLV), leading to tip leakage vortex breakdown (TVB). In order to control TVB and enhance its performance, a vortex generator (VG) has been employed in an aspirated compressor cascade. The effect of the swirling direction of the incoming vortex induced by VG, suction flow rate, tip clearance size, and solidity were also investigated. The results reveal that TVB can occur even in a conventional compressor cascade with suction. For the newly designed compressor cascade, TVB can occur without suction, and the introduction of suction enhances TVB. After introducing an incoming vortex, TVB in the aspirated compressor cascade with suction is eliminated. The loss in the aspirated compressor cascade is reduced by 47.1% compared to that in the newly designed compressor cascade. The incoming vortex further reduces the loss by 1% compared to the aspirated compressor cascade due to the suppression of TVB. This outcome can be attributed to the fact that a co-rotating incoming vortex increases the core axial velocity of TLV and reduces its strength, thereby enabling TLV to withstand the high adverse pressure gradient induced by suction. It is worth noting that a counter-rotating incoming vortex enhances TVB, making it an unsuitable design for controlling TVB.</div></div>","PeriodicalId":335,"journal":{"name":"International Journal of Heat and Fluid Flow","volume":"114 ","pages":"Article 109796"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Fluid Flow","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142727X25000542","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Boundary layer suction is an efficient method for mitigating flow separation and enhancing the performance of a highly loaded compressor cascade. Nevertheless, in a compressor cascade with tip clearance, the high adverse-pressure gradient induced by suction can exert a negative impact on tip leakage vortex (TLV), leading to tip leakage vortex breakdown (TVB). In order to control TVB and enhance its performance, a vortex generator (VG) has been employed in an aspirated compressor cascade. The effect of the swirling direction of the incoming vortex induced by VG, suction flow rate, tip clearance size, and solidity were also investigated. The results reveal that TVB can occur even in a conventional compressor cascade with suction. For the newly designed compressor cascade, TVB can occur without suction, and the introduction of suction enhances TVB. After introducing an incoming vortex, TVB in the aspirated compressor cascade with suction is eliminated. The loss in the aspirated compressor cascade is reduced by 47.1% compared to that in the newly designed compressor cascade. The incoming vortex further reduces the loss by 1% compared to the aspirated compressor cascade due to the suppression of TVB. This outcome can be attributed to the fact that a co-rotating incoming vortex increases the core axial velocity of TLV and reduces its strength, thereby enabling TLV to withstand the high adverse pressure gradient induced by suction. It is worth noting that a counter-rotating incoming vortex enhances TVB, making it an unsuitable design for controlling TVB.
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Heat and Fluid Flow
International Journal of Heat and Fluid Flow 工程技术-工程:机械
CiteScore
5.00
自引率
7.70%
发文量
131
审稿时长
33 days
期刊介绍: The International Journal of Heat and Fluid Flow welcomes high-quality original contributions on experimental, computational, and physical aspects of convective heat transfer and fluid dynamics relevant to engineering or the environment, including multiphase and microscale flows. Papers reporting the application of these disciplines to design and development, with emphasis on new technological fields, are also welcomed. Some of these new fields include microscale electronic and mechanical systems; medical and biological systems; and thermal and flow control in both the internal and external environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信