Covalent tensor hydrogel using a self-semisacrificing strategy for effective photothermal steam generation

IF 8.3 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Yingqi Wang , Wenxin Lu , Hanyi Hou , Fei Yao , Xiaorui Li , Xin Du , Xingang Wang , Hongliang Dai , Hongya Geng
{"title":"Covalent tensor hydrogel using a self-semisacrificing strategy for effective photothermal steam generation","authors":"Yingqi Wang ,&nbsp;Wenxin Lu ,&nbsp;Hanyi Hou ,&nbsp;Fei Yao ,&nbsp;Xiaorui Li ,&nbsp;Xin Du ,&nbsp;Xingang Wang ,&nbsp;Hongliang Dai ,&nbsp;Hongya Geng","doi":"10.1016/j.desal.2025.118754","DOIUrl":null,"url":null,"abstract":"<div><div>Widespread access to solar-driven steam generation requires monolithic structures with enhanced light absorption, water transportation, and heat allocation. However, the precise assembly of building blocks necessary for this integration remains a considerable challenge. This study develops a superior covalent tensor hydrogel (CTH) consisting of microgels prepared using a microfluidic device. Our self-semisacrificial approach employs chitosan and polyethene glycol as linkers to automatically assembly their microgels, which can be further precisely regulated through ultrasonic treatment and ultraviolet irradiation. The hierarchically porous CTH features a rough upper layer that enhances light absorption and a hierarchically porous hydrogel matrix that localizes heat, promoting energy absorption and thermal management. This design enhances interfacial solar light absorption and thermal insulation, with a low thermal conductivity of 0.3 W m<sup>−1</sup> K<sup>−1</sup>, achieving a maximum evaporation rate of 3.1 kg m<sup>−2</sup> h<sup>−1</sup>. The vertical distribution of microgels within CTH creates a gradient capillary force, effectively driving water transport to the interface and enabling self-cleaning properties for prolonged effective water evaporation. This CTH monolith represents a highly effective replacement for current hydrogels in effective green solar energy usage.</div></div>","PeriodicalId":299,"journal":{"name":"Desalination","volume":"605 ","pages":"Article 118754"},"PeriodicalIF":8.3000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Desalination","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0011916425002292","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Widespread access to solar-driven steam generation requires monolithic structures with enhanced light absorption, water transportation, and heat allocation. However, the precise assembly of building blocks necessary for this integration remains a considerable challenge. This study develops a superior covalent tensor hydrogel (CTH) consisting of microgels prepared using a microfluidic device. Our self-semisacrificial approach employs chitosan and polyethene glycol as linkers to automatically assembly their microgels, which can be further precisely regulated through ultrasonic treatment and ultraviolet irradiation. The hierarchically porous CTH features a rough upper layer that enhances light absorption and a hierarchically porous hydrogel matrix that localizes heat, promoting energy absorption and thermal management. This design enhances interfacial solar light absorption and thermal insulation, with a low thermal conductivity of 0.3 W m−1 K−1, achieving a maximum evaporation rate of 3.1 kg m−2 h−1. The vertical distribution of microgels within CTH creates a gradient capillary force, effectively driving water transport to the interface and enabling self-cleaning properties for prolonged effective water evaporation. This CTH monolith represents a highly effective replacement for current hydrogels in effective green solar energy usage.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Desalination
Desalination 工程技术-工程:化工
CiteScore
14.60
自引率
20.20%
发文量
619
审稿时长
41 days
期刊介绍: Desalination is a scholarly journal that focuses on the field of desalination materials, processes, and associated technologies. It encompasses a wide range of disciplines and aims to publish exceptional papers in this area. The journal invites submissions that explicitly revolve around water desalting and its applications to various sources such as seawater, groundwater, and wastewater. It particularly encourages research on diverse desalination methods including thermal, membrane, sorption, and hybrid processes. By providing a platform for innovative studies, Desalination aims to advance the understanding and development of desalination technologies, promoting sustainable solutions for water scarcity challenges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信