Yaohua Yang , Xuanyu Zhang , Weiliang Zhang , Xuefeng Liu , Wenjing Wang
{"title":"Dynamic strain aging and serrated flow behaviour of Ta-2.5 W alloy","authors":"Yaohua Yang , Xuanyu Zhang , Weiliang Zhang , Xuefeng Liu , Wenjing Wang","doi":"10.1016/j.ijrmhm.2025.107121","DOIUrl":null,"url":null,"abstract":"<div><div>The compression behaviour of the Ta-2.5 W alloy was investigated over the temperature range from room temperature to 450 °C at strain rates of 0.001 s<sup>−1</sup>, 0.01 s<sup>−1</sup>, 0.1 s<sup>−1</sup>, 1 s<sup>−1</sup>, 5 s<sup>−1</sup>, and 10 s<sup>−1</sup>. The test results are thoroughly analysed with particular attention to the typical features and mechanism of dynamic strain aging (DSA) and its effects on microstructure evolution. The stress-strain curves clearly exhibit the serrated flow behaviour, and a continuous variation in serration style from A to A + B or A + C<sub>A</sub> with increasing deformation temperature occurred. The typical characteristics of serrated yielding, positive temperature sensitivity in flow stress, increased work hardening rate and negative strain rate sensitivity indicate the occurrence of DSA. With increasing accumulated strain, the negative strain rate sensitive region moves to high temperatures and contracts at low strain rates, whereas it expands at higher strain rates. The alloy exhibited both normal and inverse Portevin-Le Chatelier effects, which originate from the interaction between interstitial or substitutional solute atoms and moving dislocations, resulting in the appearance of planar slip, dislocation loops and dislocation walls. Higher strain rates and DSA inhibit dynamic recovery and result in higher dislocation densities and low angle grain boundary frequency.</div></div>","PeriodicalId":14216,"journal":{"name":"International Journal of Refractory Metals & Hard Materials","volume":"129 ","pages":"Article 107121"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refractory Metals & Hard Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263436825000861","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The compression behaviour of the Ta-2.5 W alloy was investigated over the temperature range from room temperature to 450 °C at strain rates of 0.001 s−1, 0.01 s−1, 0.1 s−1, 1 s−1, 5 s−1, and 10 s−1. The test results are thoroughly analysed with particular attention to the typical features and mechanism of dynamic strain aging (DSA) and its effects on microstructure evolution. The stress-strain curves clearly exhibit the serrated flow behaviour, and a continuous variation in serration style from A to A + B or A + CA with increasing deformation temperature occurred. The typical characteristics of serrated yielding, positive temperature sensitivity in flow stress, increased work hardening rate and negative strain rate sensitivity indicate the occurrence of DSA. With increasing accumulated strain, the negative strain rate sensitive region moves to high temperatures and contracts at low strain rates, whereas it expands at higher strain rates. The alloy exhibited both normal and inverse Portevin-Le Chatelier effects, which originate from the interaction between interstitial or substitutional solute atoms and moving dislocations, resulting in the appearance of planar slip, dislocation loops and dislocation walls. Higher strain rates and DSA inhibit dynamic recovery and result in higher dislocation densities and low angle grain boundary frequency.
期刊介绍:
The International Journal of Refractory Metals and Hard Materials (IJRMHM) publishes original research articles concerned with all aspects of refractory metals and hard materials. Refractory metals are defined as metals with melting points higher than 1800 °C. These are tungsten, molybdenum, chromium, tantalum, niobium, hafnium, and rhenium, as well as many compounds and alloys based thereupon. Hard materials that are included in the scope of this journal are defined as materials with hardness values higher than 1000 kg/mm2, primarily intended for applications as manufacturing tools or wear resistant components in mechanical systems. Thus they encompass carbides, nitrides and borides of metals, and related compounds. A special focus of this journal is put on the family of hardmetals, which is also known as cemented tungsten carbide, and cermets which are based on titanium carbide and carbonitrides with or without a metal binder. Ceramics and superhard materials including diamond and cubic boron nitride may also be accepted provided the subject material is presented as hard materials as defined above.