Niklas Köller , Dustin Roedder , Christian J. Linnartz , Mark Enders , Florian Morell , Patrick Altmeier , Matthias Wessling
{"title":"Recovery of nitrate and fluoride salts from stainless steel pickling wastewater with flow-electrode capacitive deionization","authors":"Niklas Köller , Dustin Roedder , Christian J. Linnartz , Mark Enders , Florian Morell , Patrick Altmeier , Matthias Wessling","doi":"10.1016/j.hazl.2025.100148","DOIUrl":null,"url":null,"abstract":"<div><div>Flow-electrode Capacitive Deionization (FCDI) is an innovative method for practical salt removal and recycling applications. Here, we report that FCDI facilitates the recovery of nitrate and fluoride salts from brines produced during the wastewater treatment process in a stainless steel pickling line. Laboratory-scale experiments with synthetic wastewaters were used to evaluate the influence of (a) the membrane thickness, (b) feed flow rates, and (c) applied voltage on the outlet concentrations and the average salt transfer rate. In continuous single-pass experiments, the flow rates of diluate and concentrate have the greatest influence on the resulting outlet concentrations in the FCDI process as they directly influence the residence time. The operating voltage of the FCDI process can be varied to increase the ratio of fluoride over nitrate for recycling.</div></div>","PeriodicalId":93463,"journal":{"name":"Journal of hazardous materials letters","volume":"6 ","pages":"Article 100148"},"PeriodicalIF":6.6000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of hazardous materials letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666911025000085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Flow-electrode Capacitive Deionization (FCDI) is an innovative method for practical salt removal and recycling applications. Here, we report that FCDI facilitates the recovery of nitrate and fluoride salts from brines produced during the wastewater treatment process in a stainless steel pickling line. Laboratory-scale experiments with synthetic wastewaters were used to evaluate the influence of (a) the membrane thickness, (b) feed flow rates, and (c) applied voltage on the outlet concentrations and the average salt transfer rate. In continuous single-pass experiments, the flow rates of diluate and concentrate have the greatest influence on the resulting outlet concentrations in the FCDI process as they directly influence the residence time. The operating voltage of the FCDI process can be varied to increase the ratio of fluoride over nitrate for recycling.