Recovery of nitrate and fluoride salts from stainless steel pickling wastewater with flow-electrode capacitive deionization

IF 6.6 Q1 ENGINEERING, ENVIRONMENTAL
Niklas Köller , Dustin Roedder , Christian J. Linnartz , Mark Enders , Florian Morell , Patrick Altmeier , Matthias Wessling
{"title":"Recovery of nitrate and fluoride salts from stainless steel pickling wastewater with flow-electrode capacitive deionization","authors":"Niklas Köller ,&nbsp;Dustin Roedder ,&nbsp;Christian J. Linnartz ,&nbsp;Mark Enders ,&nbsp;Florian Morell ,&nbsp;Patrick Altmeier ,&nbsp;Matthias Wessling","doi":"10.1016/j.hazl.2025.100148","DOIUrl":null,"url":null,"abstract":"<div><div>Flow-electrode Capacitive Deionization (FCDI) is an innovative method for practical salt removal and recycling applications. Here, we report that FCDI facilitates the recovery of nitrate and fluoride salts from brines produced during the wastewater treatment process in a stainless steel pickling line. Laboratory-scale experiments with synthetic wastewaters were used to evaluate the influence of (a) the membrane thickness, (b) feed flow rates, and (c) applied voltage on the outlet concentrations and the average salt transfer rate. In continuous single-pass experiments, the flow rates of diluate and concentrate have the greatest influence on the resulting outlet concentrations in the FCDI process as they directly influence the residence time. The operating voltage of the FCDI process can be varied to increase the ratio of fluoride over nitrate for recycling.</div></div>","PeriodicalId":93463,"journal":{"name":"Journal of hazardous materials letters","volume":"6 ","pages":"Article 100148"},"PeriodicalIF":6.6000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of hazardous materials letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666911025000085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Flow-electrode Capacitive Deionization (FCDI) is an innovative method for practical salt removal and recycling applications. Here, we report that FCDI facilitates the recovery of nitrate and fluoride salts from brines produced during the wastewater treatment process in a stainless steel pickling line. Laboratory-scale experiments with synthetic wastewaters were used to evaluate the influence of (a) the membrane thickness, (b) feed flow rates, and (c) applied voltage on the outlet concentrations and the average salt transfer rate. In continuous single-pass experiments, the flow rates of diluate and concentrate have the greatest influence on the resulting outlet concentrations in the FCDI process as they directly influence the residence time. The operating voltage of the FCDI process can be varied to increase the ratio of fluoride over nitrate for recycling.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of hazardous materials letters
Journal of hazardous materials letters Pollution, Health, Toxicology and Mutagenesis, Environmental Chemistry, Waste Management and Disposal, Environmental Engineering
CiteScore
10.30
自引率
0.00%
发文量
0
审稿时长
20 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信