Zihao Zeng , Tianfeng Zhou , Zhikang Zhou , Gang Wang , Xiuwen Sun , Qian Yu , Jia Zhou , Yubing Guo
{"title":"Glass-glass molding of concave-convex double-sided microlens arrays with high alignment accuracy","authors":"Zihao Zeng , Tianfeng Zhou , Zhikang Zhou , Gang Wang , Xiuwen Sun , Qian Yu , Jia Zhou , Yubing Guo","doi":"10.1016/j.precisioneng.2025.02.014","DOIUrl":null,"url":null,"abstract":"<div><div>The utilization of a double-sided microlens array (DSMLA) eliminates optical energy loss, eliminates assembly errors, simplifies the optical system's structure, and enhances overall performance efficiency. Precision glass molding (PGM) has been applied to fabricate DSMLAs, and the accuracy of aligning the molded DSMLAs significantly impacts optical performance. This study delves into the thermal deformation mechanisms of glass to present a novel approach: utilizing a metal mold core for manufacturing a high transition temperature (<em>T</em><sub>g</sub>) glass microlens array (MLA). Subsequently, this high-<em>T</em><sub>g</sub> glass MLA is combined with the metal mold core, serving as upper and lower cores, to manufacture low-<em>T</em><sub>g</sub> glass concave-convex DSMLAs. The study scrutinizes the impact of optical energy loss rate and alignment errors in concave-convex DSMLAs on optical performance. Moreover, a method to control alignment errors in concave-convex DSMLAs is proposed to boost lens alignment accuracy. A finite element simulation model was established to evaluate the forming speed and stress distribution of the concave-convex DSMLAs. Experimental findings demonstrate that high-<em>T</em><sub>g</sub> glass as a mold core facilitates high-precision shape transfer, resulting in concave-convex DSMLAs with high alignment accuracy. Optical measurements reveal that the DSMLAs exhibit excellent beam shaping effects with spot uniformity at 97.23 %. The method provides a strategy for creating concave-convex DSMLAs with high alignment accuracy.</div></div>","PeriodicalId":54589,"journal":{"name":"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology","volume":"94 ","pages":"Pages 80-90"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141635925000522","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
The utilization of a double-sided microlens array (DSMLA) eliminates optical energy loss, eliminates assembly errors, simplifies the optical system's structure, and enhances overall performance efficiency. Precision glass molding (PGM) has been applied to fabricate DSMLAs, and the accuracy of aligning the molded DSMLAs significantly impacts optical performance. This study delves into the thermal deformation mechanisms of glass to present a novel approach: utilizing a metal mold core for manufacturing a high transition temperature (Tg) glass microlens array (MLA). Subsequently, this high-Tg glass MLA is combined with the metal mold core, serving as upper and lower cores, to manufacture low-Tg glass concave-convex DSMLAs. The study scrutinizes the impact of optical energy loss rate and alignment errors in concave-convex DSMLAs on optical performance. Moreover, a method to control alignment errors in concave-convex DSMLAs is proposed to boost lens alignment accuracy. A finite element simulation model was established to evaluate the forming speed and stress distribution of the concave-convex DSMLAs. Experimental findings demonstrate that high-Tg glass as a mold core facilitates high-precision shape transfer, resulting in concave-convex DSMLAs with high alignment accuracy. Optical measurements reveal that the DSMLAs exhibit excellent beam shaping effects with spot uniformity at 97.23 %. The method provides a strategy for creating concave-convex DSMLAs with high alignment accuracy.
期刊介绍:
Precision Engineering - Journal of the International Societies for Precision Engineering and Nanotechnology is devoted to the multidisciplinary study and practice of high accuracy engineering, metrology, and manufacturing. The journal takes an integrated approach to all subjects related to research, design, manufacture, performance validation, and application of high precision machines, instruments, and components, including fundamental and applied research and development in manufacturing processes, fabrication technology, and advanced measurement science. The scope includes precision-engineered systems and supporting metrology over the full range of length scales, from atom-based nanotechnology and advanced lithographic technology to large-scale systems, including optical and radio telescopes and macrometrology.