Zhongyan Hu , Wenjing Liu , Jianyu Zhang , Xiaoyu Guo , Huaquan Fang , Junjun Ni , Jacky W.Y. Lam , Ryan T.K. Kwok , Feng Xu , Guorui Jin , Ben Zhong Tang
{"title":"Engineering long-lived charge separation states boosts type-I ROS generation for efficient cancer therapy","authors":"Zhongyan Hu , Wenjing Liu , Jianyu Zhang , Xiaoyu Guo , Huaquan Fang , Junjun Ni , Jacky W.Y. Lam , Ryan T.K. Kwok , Feng Xu , Guorui Jin , Ben Zhong Tang","doi":"10.1016/j.biomaterials.2025.123218","DOIUrl":null,"url":null,"abstract":"<div><div>Organic photosensitizers (PSs) with long-lived charge-separated states (CSs) are optimal for converting photonic energy into reactive oxygen species (ROS) by maximizing the interaction between excited electrons and holes in subsequent photoreactions. However, the substantial consumption of oxygen by the singlet oxygen species produced by these PSs can significantly impede their anticancer efficacy, because of the hypoxia nature of solid tumors. Herein, we present a rational strategy for the structural modification of the well-known Fukuzumi acridinium salt (9-mesityl-10-methylacridinium ion) with long-lived CSs, by incorporating a methyl-substituted diphenylamine group (named MTPAA). This modification significantly enhances type-I ROS generation. The “methyl effect” in MTPAA has distinguished merits of stabilized radical species through resonance, leading to an over 8-fold increase in type-I ROS generation compared to TPAA, which lacks the methyl group. Moreover, cellular experiments show that MTPAA with the “methyl effect” significantly enhances photodynamic therapy efficacy under hypoxic conditions. Our molecular design strategy offers a promising approach to creating high-performance type-I PSs and is anticipated to inspire broader exploration in other photosensitizer systems with long-lived CSs, serving as a versatile strategy for advancing type-I PS development.</div></div>","PeriodicalId":254,"journal":{"name":"Biomaterials","volume":"319 ","pages":"Article 123218"},"PeriodicalIF":12.8000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142961225001371","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Organic photosensitizers (PSs) with long-lived charge-separated states (CSs) are optimal for converting photonic energy into reactive oxygen species (ROS) by maximizing the interaction between excited electrons and holes in subsequent photoreactions. However, the substantial consumption of oxygen by the singlet oxygen species produced by these PSs can significantly impede their anticancer efficacy, because of the hypoxia nature of solid tumors. Herein, we present a rational strategy for the structural modification of the well-known Fukuzumi acridinium salt (9-mesityl-10-methylacridinium ion) with long-lived CSs, by incorporating a methyl-substituted diphenylamine group (named MTPAA). This modification significantly enhances type-I ROS generation. The “methyl effect” in MTPAA has distinguished merits of stabilized radical species through resonance, leading to an over 8-fold increase in type-I ROS generation compared to TPAA, which lacks the methyl group. Moreover, cellular experiments show that MTPAA with the “methyl effect” significantly enhances photodynamic therapy efficacy under hypoxic conditions. Our molecular design strategy offers a promising approach to creating high-performance type-I PSs and is anticipated to inspire broader exploration in other photosensitizer systems with long-lived CSs, serving as a versatile strategy for advancing type-I PS development.
期刊介绍:
Biomaterials is an international journal covering the science and clinical application of biomaterials. A biomaterial is now defined as a substance that has been engineered to take a form which, alone or as part of a complex system, is used to direct, by control of interactions with components of living systems, the course of any therapeutic or diagnostic procedure. It is the aim of the journal to provide a peer-reviewed forum for the publication of original papers and authoritative review and opinion papers dealing with the most important issues facing the use of biomaterials in clinical practice. The scope of the journal covers the wide range of physical, biological and chemical sciences that underpin the design of biomaterials and the clinical disciplines in which they are used. These sciences include polymer synthesis and characterization, drug and gene vector design, the biology of the host response, immunology and toxicology and self assembly at the nanoscale. Clinical applications include the therapies of medical technology and regenerative medicine in all clinical disciplines, and diagnostic systems that reply on innovative contrast and sensing agents. The journal is relevant to areas such as cancer diagnosis and therapy, implantable devices, drug delivery systems, gene vectors, bionanotechnology and tissue engineering.