Yuxue Zhang , Zhaoyong Liu , Jiahui Wang , Hui Du , Qi Sun , Ruitong Gao , Zhenming Xu
{"title":"Efficient and high-selective lithium extraction from waste LiMn2O4 batteries by synergetic pyrolysis with polyvinyl chloride","authors":"Yuxue Zhang , Zhaoyong Liu , Jiahui Wang , Hui Du , Qi Sun , Ruitong Gao , Zhenming Xu","doi":"10.1016/j.wasman.2025.02.049","DOIUrl":null,"url":null,"abstract":"<div><div>Recycling Li from spent lithium ion batteries (SLIBs) in an efficient and highly selective manner could protect the environment and introduce the circular economy principle to society. Simultaneously, the urgent need to address plastic waste, particularly polyvinyl chloride (PVC), has become a global concern. In this work, a strategy for Li extraction through synergetic pyrolysis of LiMn<sub>2</sub>O<sub>4</sub> cathode materials (LMO) and PVC is proposed. Under optimal conditions, the recovery rates of lithium and manganese reached 99.89 % and 0.02 %, respectively, demonstrating efficient separation of these elements. Temperature was found to play a critical role in the leaching rates of lithium and manganese by promoting the decomposition and reduction of LMO. Additionally, kinetic analysis shows that the activation energy (<em>E<sub>a</sub></em>) of the synergetic pyrolysis is 139.60 KJ/mol, and the pyrolysis mechanism satisfies third-order reaction process. Eventually, the proposed mechanism involves the synergistic effects of chlorination and reduction reactions. First, HCl is generated by PVC pyrolysis under the catalytic effect of LMO. Then, the chlorination of HCl with LMO occurs by capturing structural oxygen and generating LiCl and MnCl<sub>2</sub>. Simultaneously, the reduction reaction between the reducing species generated by PVC pyrolysis and LMO occurs to form Li<sub>2</sub>O and MnO, ultimately enabling the separation of lithium and manganese. Overall, this paper presents a novel approach for future applications by providing a theoretical basis for selective Li extraction.</div></div>","PeriodicalId":23969,"journal":{"name":"Waste management","volume":"198 ","pages":"Pages 95-105"},"PeriodicalIF":7.1000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste management","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0956053X25001242","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Recycling Li from spent lithium ion batteries (SLIBs) in an efficient and highly selective manner could protect the environment and introduce the circular economy principle to society. Simultaneously, the urgent need to address plastic waste, particularly polyvinyl chloride (PVC), has become a global concern. In this work, a strategy for Li extraction through synergetic pyrolysis of LiMn2O4 cathode materials (LMO) and PVC is proposed. Under optimal conditions, the recovery rates of lithium and manganese reached 99.89 % and 0.02 %, respectively, demonstrating efficient separation of these elements. Temperature was found to play a critical role in the leaching rates of lithium and manganese by promoting the decomposition and reduction of LMO. Additionally, kinetic analysis shows that the activation energy (Ea) of the synergetic pyrolysis is 139.60 KJ/mol, and the pyrolysis mechanism satisfies third-order reaction process. Eventually, the proposed mechanism involves the synergistic effects of chlorination and reduction reactions. First, HCl is generated by PVC pyrolysis under the catalytic effect of LMO. Then, the chlorination of HCl with LMO occurs by capturing structural oxygen and generating LiCl and MnCl2. Simultaneously, the reduction reaction between the reducing species generated by PVC pyrolysis and LMO occurs to form Li2O and MnO, ultimately enabling the separation of lithium and manganese. Overall, this paper presents a novel approach for future applications by providing a theoretical basis for selective Li extraction.
期刊介绍:
Waste Management is devoted to the presentation and discussion of information on solid wastes,it covers the entire lifecycle of solid. wastes.
Scope:
Addresses solid wastes in both industrialized and economically developing countries
Covers various types of solid wastes, including:
Municipal (e.g., residential, institutional, commercial, light industrial)
Agricultural
Special (e.g., C and D, healthcare, household hazardous wastes, sewage sludge)