Guangyu Zhang, Jialiang Dong, Ziyi Li, Zhongxue Feng, Jun Tan, Xianhua Chen, Jianhong Yi, Fusheng Pan
{"title":"Improvement in electromagnetic shielding effectiveness and mechanical properties of ultrafine Mg98.5Zn0.5Y alloy via friction stir processing","authors":"Guangyu Zhang, Jialiang Dong, Ziyi Li, Zhongxue Feng, Jun Tan, Xianhua Chen, Jianhong Yi, Fusheng Pan","doi":"10.1016/j.jma.2025.02.011","DOIUrl":null,"url":null,"abstract":"A novel Mg<sub>98.5</sub>Zn<sub>0.5</sub>Y alloy sheet with ultrafine grains and exceptional electromagnetic shielding performance has been fabricated using friction stir processing (FSP). This study investigates the impact of FSP on the microstructure, mechanical properties, and electromagnetic interference (EMI) shielding effectiveness (SE) of the alloy, specifically across three distinct layers within the stir zone (SZ): Top, Middle, and Bottom. The results reveal that the Mg<sub>12</sub>YZn long-period stacking ordered (LPSO) phase is the predominant structure, undergoing significant grain refinement. The grain size is drastically reduced from 1.5 mm in the as-cast state to 12.6 µm, 10.0 µm, and 7.1 µm in the Top, Middle, and Bottom, respectively. This grain refinement and fragmentation of the LPSO phase into nanoscale particles result in a substantial enhancement of mechanical properties. The ultimate tensile strength (UTS) reached 358.2 MPa with an elongation (EL) of 15.1 %, reflecting a 344 % increase in strength and a 733 % improvement in ductility compared to the as-cast material. Simultaneously, the EMI SE was maintained between 70 and 110.4 dB over a broad frequency range (30–4500 MHz). Despite the nanoscale LPSO particles contributing minimally to EMI shielding, the lamellar LPSO structure demonstrated excellent performance through multiple electromagnetic wave reflections within the matrix. These findings underscore the dual benefits of FSP in improving both mechanical strength and electromagnetic shielding effectiveness, positioning this Mg<sub>98.5</sub>Zn<sub>0.5</sub>Y alloy for advanced applications in the electronics and telecommunications sectors.","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":"84 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnesium and Alloys","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jma.2025.02.011","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
A novel Mg98.5Zn0.5Y alloy sheet with ultrafine grains and exceptional electromagnetic shielding performance has been fabricated using friction stir processing (FSP). This study investigates the impact of FSP on the microstructure, mechanical properties, and electromagnetic interference (EMI) shielding effectiveness (SE) of the alloy, specifically across three distinct layers within the stir zone (SZ): Top, Middle, and Bottom. The results reveal that the Mg12YZn long-period stacking ordered (LPSO) phase is the predominant structure, undergoing significant grain refinement. The grain size is drastically reduced from 1.5 mm in the as-cast state to 12.6 µm, 10.0 µm, and 7.1 µm in the Top, Middle, and Bottom, respectively. This grain refinement and fragmentation of the LPSO phase into nanoscale particles result in a substantial enhancement of mechanical properties. The ultimate tensile strength (UTS) reached 358.2 MPa with an elongation (EL) of 15.1 %, reflecting a 344 % increase in strength and a 733 % improvement in ductility compared to the as-cast material. Simultaneously, the EMI SE was maintained between 70 and 110.4 dB over a broad frequency range (30–4500 MHz). Despite the nanoscale LPSO particles contributing minimally to EMI shielding, the lamellar LPSO structure demonstrated excellent performance through multiple electromagnetic wave reflections within the matrix. These findings underscore the dual benefits of FSP in improving both mechanical strength and electromagnetic shielding effectiveness, positioning this Mg98.5Zn0.5Y alloy for advanced applications in the electronics and telecommunications sectors.
期刊介绍:
The Journal of Magnesium and Alloys serves as a global platform for both theoretical and experimental studies in magnesium science and engineering. It welcomes submissions investigating various scientific and engineering factors impacting the metallurgy, processing, microstructure, properties, and applications of magnesium and alloys. The journal covers all aspects of magnesium and alloy research, including raw materials, alloy casting, extrusion and deformation, corrosion and surface treatment, joining and machining, simulation and modeling, microstructure evolution and mechanical properties, new alloy development, magnesium-based composites, bio-materials and energy materials, applications, and recycling.