Mechanisms governing in-depth infiltration of crack filling solutions in concrete using a magnetic approach

IF 10.9 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Onur Ozturk, Sriramya Duddukuri Nair
{"title":"Mechanisms governing in-depth infiltration of crack filling solutions in concrete using a magnetic approach","authors":"Onur Ozturk,&nbsp;Sriramya Duddukuri Nair","doi":"10.1016/j.cemconres.2025.107856","DOIUrl":null,"url":null,"abstract":"<div><div>Cracks reduce the strength and service life of concrete structures. Although high-performance crack filling materials are available in market, achieving deep infiltration is often difficult. In this work, we propose the utilization of a magnetic approach for enhanced infiltration and examine the mechanisms governing its effectiveness. Our experiments demonstrate that employing magnetic fields in the milliTesla range can significantly enhance the filling ability of solutions containing &lt;1% by volume of magnetic particles. To facilitate flow observations and gain a deeper understanding of the fundamental mechanisms, we used transparent box samples and guar gum solutions in this study. In line with the objectives of this study, we discuss potential mechanisms relevant to real concrete cracks and crack filling materials. Finally, we provide suggestions for field implementation of the proposed technology, considering the typical characteristics of concrete cracks and structural elements.</div></div>","PeriodicalId":266,"journal":{"name":"Cement and Concrete Research","volume":"192 ","pages":"Article 107856"},"PeriodicalIF":10.9000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement and Concrete Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008884625000754","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cracks reduce the strength and service life of concrete structures. Although high-performance crack filling materials are available in market, achieving deep infiltration is often difficult. In this work, we propose the utilization of a magnetic approach for enhanced infiltration and examine the mechanisms governing its effectiveness. Our experiments demonstrate that employing magnetic fields in the milliTesla range can significantly enhance the filling ability of solutions containing <1% by volume of magnetic particles. To facilitate flow observations and gain a deeper understanding of the fundamental mechanisms, we used transparent box samples and guar gum solutions in this study. In line with the objectives of this study, we discuss potential mechanisms relevant to real concrete cracks and crack filling materials. Finally, we provide suggestions for field implementation of the proposed technology, considering the typical characteristics of concrete cracks and structural elements.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cement and Concrete Research
Cement and Concrete Research 工程技术-材料科学:综合
CiteScore
20.90
自引率
12.30%
发文量
318
审稿时长
53 days
期刊介绍: Cement and Concrete Research is dedicated to publishing top-notch research on the materials science and engineering of cement, cement composites, mortars, concrete, and related materials incorporating cement or other mineral binders. The journal prioritizes reporting significant findings in research on the properties and performance of cementitious materials. It also covers novel experimental techniques, the latest analytical and modeling methods, examination and diagnosis of actual cement and concrete structures, and the exploration of potential improvements in materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信