Larvicidal effect and mechanism of action of the essential oil and major compound from Piper brachypetiolatum against Aedes aegypti larvae, with protection of non-target aquatic animals

IF 4.1 1区 农林科学 Q1 ENTOMOLOGY
Suelen C. Lima, André C. de Oliveira, Maria Luiza L. da Costa, Dayane D. Abensur, Aylane Tamara dos S. Andrade, Hergen V. de Souza, Cláudia P. S. Tavares, Sergio M. Nunomura, Rita C. S. Nunomura, Rosemary A. Roque
{"title":"Larvicidal effect and mechanism of action of the essential oil and major compound from Piper brachypetiolatum against Aedes aegypti larvae, with protection of non-target aquatic animals","authors":"Suelen C. Lima, André C. de Oliveira, Maria Luiza L. da Costa, Dayane D. Abensur, Aylane Tamara dos S. Andrade, Hergen V. de Souza, Cláudia P. S. Tavares, Sergio M. Nunomura, Rita C. S. Nunomura, Rosemary A. Roque","doi":"10.1007/s10340-024-01861-3","DOIUrl":null,"url":null,"abstract":"<p>Botanical larvicides, such as essential oils (EO) from the <i>Piper</i> species, offer eco-friendly mosquito control by targeting Culicidae larvae while exhibiting low toxicity to non-target aquatic animals. This study investigated the larvicidal activity and mechanism of action of the essential oil (EO) from <i>Piper brachypetiolatum</i> and its main compound, (<u>E</u>)-nerolidol, against <i>Aedes aegypti</i>, as well as the effects on non-target aquatic organisms <i>Toxorhynchites haemorrhoidalis</i>, <i>Anisops bouvieri</i>, and <i>Diplonychus indicus</i>. The EO was extracted from the leaves of <i>P. brachypetiolatum</i> using hydrodistillation, yielding 1.5 ± 0.7%. Gas chromatography revealed the presence of sesquiterpenes (64.70%), oxygenated sesquiterpenes (17.64%), monoterpenes (11.76%), and oxygenated monoterpenes (5.88%), with (<i>E</i>)-nerolidol as the major compound (64.32%). The EO and (<i>E</i>)-nerolidol exhibited significant larvicidal activity against A<i>. aegypti</i>, with LC<sub>50</sub> values of 15.51 and 9.50 mg/L, respectively. They also inhibited AChE activity (IC<sub>50</sub> values of 44.97 and 11.07 mg/L, respectively) and induced RONS overproduction (<i>p</i> &lt; 0.05) compared to the positive control, α-cypermethrin. Additionally, the EO and (<i>E</i>)-nerolidol showed no lethal effects on <i>T. haemorrhoidalis</i>, <i>A. bouvieri</i>, and <i>D. indicus</i>, with these species exhibiting 100% survival after exposure. In contrast, <i>α</i>-cypermethrin caused 100% mortality in these species. These findings highlight the potential of the EO from <i>P. brachypetiolatum</i> and (<i>E</i>)-nerolidol as effective and environmentally friendly alternatives for controlling <i>A. aegypti</i> larvae.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":"28 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pest Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10340-024-01861-3","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Botanical larvicides, such as essential oils (EO) from the Piper species, offer eco-friendly mosquito control by targeting Culicidae larvae while exhibiting low toxicity to non-target aquatic animals. This study investigated the larvicidal activity and mechanism of action of the essential oil (EO) from Piper brachypetiolatum and its main compound, (E)-nerolidol, against Aedes aegypti, as well as the effects on non-target aquatic organisms Toxorhynchites haemorrhoidalis, Anisops bouvieri, and Diplonychus indicus. The EO was extracted from the leaves of P. brachypetiolatum using hydrodistillation, yielding 1.5 ± 0.7%. Gas chromatography revealed the presence of sesquiterpenes (64.70%), oxygenated sesquiterpenes (17.64%), monoterpenes (11.76%), and oxygenated monoterpenes (5.88%), with (E)-nerolidol as the major compound (64.32%). The EO and (E)-nerolidol exhibited significant larvicidal activity against A. aegypti, with LC50 values of 15.51 and 9.50 mg/L, respectively. They also inhibited AChE activity (IC50 values of 44.97 and 11.07 mg/L, respectively) and induced RONS overproduction (p < 0.05) compared to the positive control, α-cypermethrin. Additionally, the EO and (E)-nerolidol showed no lethal effects on T. haemorrhoidalis, A. bouvieri, and D. indicus, with these species exhibiting 100% survival after exposure. In contrast, α-cypermethrin caused 100% mortality in these species. These findings highlight the potential of the EO from P. brachypetiolatum and (E)-nerolidol as effective and environmentally friendly alternatives for controlling A. aegypti larvae.

短叶红挥发油及主要化合物对埃及伊蚊幼虫的杀幼虫效果及作用机理及其对非目标水生动物的保护作用
植物性杀幼虫剂,如来自Piper物种的精油(EO),通过针对库蚊科幼虫提供生态友好的蚊虫控制,同时对非目标水生动物表现出低毒性。本研究研究了短叶柄胡椒精油(EO)及其主要化合物(E)-神经樟醇(E)对埃及伊蚊的杀幼虫活性和作用机制,以及对非靶水生生物(如:haemorhynchites haemorrhoidalis、bouvieri Anisops、indicus Diplonychus)的作用。用加氢蒸馏法从短叶青藤叶中提取EO,收率为1.5±0.7%。气相色谱分析结果显示其主要成分为倍半萜(64.70%)、氧合倍半萜(17.64%)、单萜(11.76%)和氧合单萜(5.88%),其中(E)-神经樟醇为主要化合物(64.32%)。EO和(E)-神经樟醇对埃及伊蚊的LC50值分别为15.51和9.50 mg/L,具有显著的杀幼虫活性。与阳性对照α-氯氰菊酯相比,它们抑制了乙酰胆碱酯酶活性(IC50值分别为44.97和11.07 mg/L),诱导了活性氧自由基的过量生成(p < 0.05)。此外,光电和(E)对t . haemorrhoidalis橙花叔醇没有致命的影响,a . bouvieri和d indicus,这些物种接触后表现出100%存活。而α-氯氰菊酯的死亡率为100%。这些发现突出了短叶青藤和(E)-神经樟醇的EO作为控制埃及伊蚊幼虫的有效和环保替代品的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Pest Science
Journal of Pest Science 生物-昆虫学
CiteScore
10.40
自引率
8.30%
发文量
114
审稿时长
6-12 weeks
期刊介绍: Journal of Pest Science publishes high-quality papers on all aspects of pest science in agriculture, horticulture (including viticulture), forestry, urban pests, and stored products research, including health and safety issues. Journal of Pest Science reports on advances in control of pests and animal vectors of diseases, the biology, ethology and ecology of pests and their antagonists, and the use of other beneficial organisms in pest control. The journal covers all noxious or damaging groups of animals, including arthropods, nematodes, molluscs, and vertebrates. Journal of Pest Science devotes special attention to emerging and innovative pest control strategies, including the side effects of such approaches on non-target organisms, for example natural enemies and pollinators, and the implementation of these strategies in integrated pest management. Journal of Pest Science also publishes papers on the management of agro- and forest ecosystems where this is relevant to pest control. Papers on important methodological developments relevant for pest control will be considered as well.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信