Activity of sorghum aphid and its natural enemies in the context of agroecological and weather conditions.

IF 2.4 Q1 ENTOMOLOGY
Frontiers in insect science Pub Date : 2025-02-10 eCollection Date: 2025-01-01 DOI:10.3389/finsc.2025.1503044
Tomasz E Koralewski, Michael J Brewer, Leonel L Deleon, Norman C Elliott, Kristopher Giles, Adrianna Szczepaniec, Ashleigh M Faris
{"title":"Activity of sorghum aphid and its natural enemies in the context of agroecological and weather conditions.","authors":"Tomasz E Koralewski, Michael J Brewer, Leonel L Deleon, Norman C Elliott, Kristopher Giles, Adrianna Szczepaniec, Ashleigh M Faris","doi":"10.3389/finsc.2025.1503044","DOIUrl":null,"url":null,"abstract":"<p><p>Agroecological-oriented areawide pest management leverages the innate ability of agroecosystem to suppress pests, and thus to utilize ecosystem services, a key component of sustainable agriculture. A growing body of knowledge on interactions between pests and their natural enemies allows us to recognize the complexity of these interactions that often depend on environmental circumstances. Sorghum aphid, <i>Melanaphis sorghi</i> (Theobald) (Hemiptera: Aphididae), is a recent but established pest of sorghum in the Great Plains of North America. Both predators and parasitoids prey on sorghum aphid but their activity and impact change throughout the area and throughout the year. Both landscape and weather factors have been shown to affect the abundance and numerical responses of these insects, consistent with observations in other aphid species. In this study we used data on counts of sorghum aphids, lady beetles (Coleoptera: Coccinellidae), and parasitoid wasps <i>Aphelinus nigritus</i> Howard (Hymenoptera: Aphelinidae) and <i>Lysiphlebus testaceipes</i> (Cresson) (Hymenoptera: Braconidae) collected in Kansas, Oklahoma and Texas states of the United States. We analyzed insect dynamics in the context of landscape and weather factors. We built multiple regression models using data from the years 2017-2019 for metrics such as maximum number of insects per leaf, response time of natural enemies to pest presence, and speed of increase in insect abundance. Our results indicate that various aspects of landscape composition, landscape configuration, and weather affect various insect groups and various aspects of insect dynamics in the field. Moreover, characteristics of specific landscape categories seemed to be more informative than overall measure of landscape diversity. Our study provides insights on interactions along both spatial and temporal scales, with the latter considered understudied.</p>","PeriodicalId":517424,"journal":{"name":"Frontiers in insect science","volume":"5 ","pages":"1503044"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11865913/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in insect science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/finsc.2025.1503044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Agroecological-oriented areawide pest management leverages the innate ability of agroecosystem to suppress pests, and thus to utilize ecosystem services, a key component of sustainable agriculture. A growing body of knowledge on interactions between pests and their natural enemies allows us to recognize the complexity of these interactions that often depend on environmental circumstances. Sorghum aphid, Melanaphis sorghi (Theobald) (Hemiptera: Aphididae), is a recent but established pest of sorghum in the Great Plains of North America. Both predators and parasitoids prey on sorghum aphid but their activity and impact change throughout the area and throughout the year. Both landscape and weather factors have been shown to affect the abundance and numerical responses of these insects, consistent with observations in other aphid species. In this study we used data on counts of sorghum aphids, lady beetles (Coleoptera: Coccinellidae), and parasitoid wasps Aphelinus nigritus Howard (Hymenoptera: Aphelinidae) and Lysiphlebus testaceipes (Cresson) (Hymenoptera: Braconidae) collected in Kansas, Oklahoma and Texas states of the United States. We analyzed insect dynamics in the context of landscape and weather factors. We built multiple regression models using data from the years 2017-2019 for metrics such as maximum number of insects per leaf, response time of natural enemies to pest presence, and speed of increase in insect abundance. Our results indicate that various aspects of landscape composition, landscape configuration, and weather affect various insect groups and various aspects of insect dynamics in the field. Moreover, characteristics of specific landscape categories seemed to be more informative than overall measure of landscape diversity. Our study provides insights on interactions along both spatial and temporal scales, with the latter considered understudied.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信