Leah T Gaeta, M Deniz Albayrak, Lorenzo Kinnicutt, Susanna Aufrichtig, Pranav Sultania, Hanna Schlegel, Terry D Ellis, Tommaso Ranzani
{"title":"A magnetically controlled soft robotic glove for hand rehabilitation.","authors":"Leah T Gaeta, M Deniz Albayrak, Lorenzo Kinnicutt, Susanna Aufrichtig, Pranav Sultania, Hanna Schlegel, Terry D Ellis, Tommaso Ranzani","doi":"10.1016/j.device.2024.100512","DOIUrl":null,"url":null,"abstract":"<p><p>For individuals with hand motor function losses, rehabilitation is necessary for regaining strength and range of motion to accomplish daily activities. Typically within a clinical setting, repetitive strength-based and task-specific exercises are prescribed. However, these therapies are generally costly and non-portable, limiting patient accessibility and rendering patient compliance impractical. There is thus a clinical need for a system that is low-cost, portable, and accessible to improve patient compliance and outcomes. This work presents a proof-of-concept magnetically-controlled glove to provide targeted resistance-based rehabilitation for patients with hand motor impairments. The glove is inexpensive, customizable, and portable, allowing for use within a clinic and at home. Customizable resistance is achieved by electropermanent magnets (EPMs), which locally control magnetic attraction of the digits and produce rapid stiffness changes from magnetically induced jamming. Various rehabilitative exercises using the glove are demonstrated and the magnetic fields can be customized to provide necessary resistance.</p>","PeriodicalId":101324,"journal":{"name":"Device","volume":"2 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11864777/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Device","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.device.2024.100512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/22 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
For individuals with hand motor function losses, rehabilitation is necessary for regaining strength and range of motion to accomplish daily activities. Typically within a clinical setting, repetitive strength-based and task-specific exercises are prescribed. However, these therapies are generally costly and non-portable, limiting patient accessibility and rendering patient compliance impractical. There is thus a clinical need for a system that is low-cost, portable, and accessible to improve patient compliance and outcomes. This work presents a proof-of-concept magnetically-controlled glove to provide targeted resistance-based rehabilitation for patients with hand motor impairments. The glove is inexpensive, customizable, and portable, allowing for use within a clinic and at home. Customizable resistance is achieved by electropermanent magnets (EPMs), which locally control magnetic attraction of the digits and produce rapid stiffness changes from magnetically induced jamming. Various rehabilitative exercises using the glove are demonstrated and the magnetic fields can be customized to provide necessary resistance.