Monodefluorinative Halogenation of Perfluoroalkyl Ketones via Organophosphorus-Mediated Selective C-F Activation.

IF 8.5 Q1 CHEMISTRY, MULTIDISCIPLINARY
JACS Au Pub Date : 2025-01-28 eCollection Date: 2025-02-24 DOI:10.1021/jacsau.4c01242
Ha Eun Kim, Jun-Ho Choi, Won-Jin Chung
{"title":"Monodefluorinative Halogenation of Perfluoroalkyl Ketones via Organophosphorus-Mediated Selective C-F Activation.","authors":"Ha Eun Kim, Jun-Ho Choi, Won-Jin Chung","doi":"10.1021/jacsau.4c01242","DOIUrl":null,"url":null,"abstract":"<p><p>Through the prosperity of organofluorine chemistry in modern organic synthesis, perfluorinated organic compounds are now abundant and widely available. Consequently, these substances become attractive starting materials for the production of complex, multifunctional fluorinated molecules. However, the inherent challenges associated with the activation and discrimination of the C-F bonds typically lead to overdefluorination as well as functional group incompatibility. To address these problems, our group utilized a rationally designed organophosphorus reagent that promoted mild and selective manipulation of a single C-F bond in trifluoromethyl and pentafluoroethyl ketones via an interrupted Perkow-type reaction, which allowed the replacement of fluorine with more labile and synthetically versatile congeners such as chlorine, bromine, and iodine. The resulting α-haloperfluoroketones have two reactive units with orthogonal properties that would be suitable for the subsequent structural diversification. DFT calculations identified the favorable P-F interaction as the crucial factor from both thermodynamic and kinetic viewpoints.</p>","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":"5 2","pages":"1007-1015"},"PeriodicalIF":8.5000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11863160/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACS Au","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/jacsau.4c01242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/24 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Through the prosperity of organofluorine chemistry in modern organic synthesis, perfluorinated organic compounds are now abundant and widely available. Consequently, these substances become attractive starting materials for the production of complex, multifunctional fluorinated molecules. However, the inherent challenges associated with the activation and discrimination of the C-F bonds typically lead to overdefluorination as well as functional group incompatibility. To address these problems, our group utilized a rationally designed organophosphorus reagent that promoted mild and selective manipulation of a single C-F bond in trifluoromethyl and pentafluoroethyl ketones via an interrupted Perkow-type reaction, which allowed the replacement of fluorine with more labile and synthetically versatile congeners such as chlorine, bromine, and iodine. The resulting α-haloperfluoroketones have two reactive units with orthogonal properties that would be suitable for the subsequent structural diversification. DFT calculations identified the favorable P-F interaction as the crucial factor from both thermodynamic and kinetic viewpoints.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信