Metabolic PCTA-Based Shift Reagents for the Detection of Extracellular Lactate Using CEST MRI.

IF 8.5 Q1 CHEMISTRY, MULTIDISCIPLINARY
JACS Au Pub Date : 2025-02-10 eCollection Date: 2025-02-24 DOI:10.1021/jacsau.4c01020
Remy Chiaffarelli, Pedro F Cruz, Jonathan Cotton, Tjark Kelm, Slade Lee, Mohammad Ghaderian, Max Zimmermann, Carlos F G C Geraldes, Paul Jurek, André F Martins
{"title":"Metabolic PCTA-Based Shift Reagents for the Detection of Extracellular Lactate Using CEST MRI.","authors":"Remy Chiaffarelli, Pedro F Cruz, Jonathan Cotton, Tjark Kelm, Slade Lee, Mohammad Ghaderian, Max Zimmermann, Carlos F G C Geraldes, Paul Jurek, André F Martins","doi":"10.1021/jacsau.4c01020","DOIUrl":null,"url":null,"abstract":"<p><p>Lactate is a key metabolic driver in oncology and immunology. Even in the presence of physiological oxygen levels, most cancer cells upregulate anaerobic glycolysis, resulting in abnormal lactate production and accumulation in the tumor microenvironment. The development of more effective, sensitive, and safe probes for detecting extracellular lactate holds the potential to significantly impact cancer metabolic profiling and staging significantly. Macrocyclic-based PARACEST agents have been reported to act as shift reagents (SRs) and detect extracellular lactate via chemical exchange saturation transfer (CEST) MRI. Here, we introduce a new family of SRs based on the PCTA ligand, an inherently stable and kinetically inert group of molecules with the potential for (pre)clinical translation. We observed that Yb-PCTA and Eu-PCTA can significantly shift lactate -OH signals in the CEST spectra. <i>In vitro</i>, CEST MRI experiments proved that imaging extracellular lactate specifically with these complexes is feasible even in the presence of competing small metabolites in blood and in the tumor microenvironment. <i>In vivo</i> preclinical imaging showed that Yb-PCTA can be safely administered intravenously in mice to detect extracellular lactate noninvasively. This work contributes to the field of precision imaging in medicine and provides evidence that the PCTA-ligand is a valuable scaffold for developing molecular and metabolic imaging sensors.</p>","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":"5 2","pages":"779-790"},"PeriodicalIF":8.5000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11862947/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACS Au","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/jacsau.4c01020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/24 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Lactate is a key metabolic driver in oncology and immunology. Even in the presence of physiological oxygen levels, most cancer cells upregulate anaerobic glycolysis, resulting in abnormal lactate production and accumulation in the tumor microenvironment. The development of more effective, sensitive, and safe probes for detecting extracellular lactate holds the potential to significantly impact cancer metabolic profiling and staging significantly. Macrocyclic-based PARACEST agents have been reported to act as shift reagents (SRs) and detect extracellular lactate via chemical exchange saturation transfer (CEST) MRI. Here, we introduce a new family of SRs based on the PCTA ligand, an inherently stable and kinetically inert group of molecules with the potential for (pre)clinical translation. We observed that Yb-PCTA and Eu-PCTA can significantly shift lactate -OH signals in the CEST spectra. In vitro, CEST MRI experiments proved that imaging extracellular lactate specifically with these complexes is feasible even in the presence of competing small metabolites in blood and in the tumor microenvironment. In vivo preclinical imaging showed that Yb-PCTA can be safely administered intravenously in mice to detect extracellular lactate noninvasively. This work contributes to the field of precision imaging in medicine and provides evidence that the PCTA-ligand is a valuable scaffold for developing molecular and metabolic imaging sensors.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信