Human glycolysis isomerases are inhibited by weak metabolite modulators.

Yiming Yang Jónatansdóttir, Óttar Rolfsson, Jens G Hjörleifsson
{"title":"Human glycolysis isomerases are inhibited by weak metabolite modulators.","authors":"Yiming Yang Jónatansdóttir, Óttar Rolfsson, Jens G Hjörleifsson","doi":"10.1111/febs.70049","DOIUrl":null,"url":null,"abstract":"<p><p>Modulation of enzyme activity by metabolites represents the most efficient and rapid way of controlling metabolism. Investigating enzyme-metabolite interactions can deepen our understanding of metabolic control and aid in identifying enzyme modulators with potential therapeutic applications. These interactions vary in strength, with dissociation constants (K<sub>d</sub>) ranging from strong (nm) to weak (μm-mm). However, weak interactions are often overlooked due to the challenges in studying them. Despite this, weak modulators can reveal unknown binding modes and serve as starting points for compound optimization. In this study, we aimed to identify metabolites that weakly modulate the activity of human glucose-6-phosphate isomerase (GPI) and triosephosphate isomerase (TPI), which are potential therapeutic targets in tumor glycolysis. Through a combination of activity and binding assays, the screening revealed multiple weak inhibitors for the two targets, causing partial attenuation of their activity, with K<sub>d</sub> and K<sub>i</sub> in the low mm range. X-ray crystallography revealed six orthosteric ligands binding to the active sites - four inhibitors of GPI and two of TPI. Our findings underscore the role of weak interactions in enzyme regulation and may provide structural insights that could aid the design of inhibitors targeting human GPI and TPI in cancer intervention.</p>","PeriodicalId":94226,"journal":{"name":"The FEBS journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FEBS journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/febs.70049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Modulation of enzyme activity by metabolites represents the most efficient and rapid way of controlling metabolism. Investigating enzyme-metabolite interactions can deepen our understanding of metabolic control and aid in identifying enzyme modulators with potential therapeutic applications. These interactions vary in strength, with dissociation constants (Kd) ranging from strong (nm) to weak (μm-mm). However, weak interactions are often overlooked due to the challenges in studying them. Despite this, weak modulators can reveal unknown binding modes and serve as starting points for compound optimization. In this study, we aimed to identify metabolites that weakly modulate the activity of human glucose-6-phosphate isomerase (GPI) and triosephosphate isomerase (TPI), which are potential therapeutic targets in tumor glycolysis. Through a combination of activity and binding assays, the screening revealed multiple weak inhibitors for the two targets, causing partial attenuation of their activity, with Kd and Ki in the low mm range. X-ray crystallography revealed six orthosteric ligands binding to the active sites - four inhibitors of GPI and two of TPI. Our findings underscore the role of weak interactions in enzyme regulation and may provide structural insights that could aid the design of inhibitors targeting human GPI and TPI in cancer intervention.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信