Biochemistry and Chemoinformatics Guided Classification of Hirsutane Sesquiterpenes Isolated from Mushroom.

IF 8.5 Q1 CHEMISTRY, MULTIDISCIPLINARY
JACS Au Pub Date : 2025-01-22 eCollection Date: 2025-02-24 DOI:10.1021/jacsau.4c00983
Yaping Liu, Jumpei Nishishita, Chengwei Liu, Hideaki Oikawa, Atsushi Minami
{"title":"Biochemistry and Chemoinformatics Guided Classification of Hirsutane Sesquiterpenes Isolated from Mushroom.","authors":"Yaping Liu, Jumpei Nishishita, Chengwei Liu, Hideaki Oikawa, Atsushi Minami","doi":"10.1021/jacsau.4c00983","DOIUrl":null,"url":null,"abstract":"<p><p>Hirsutanes are mushroom-derived sesquiterpenes with a characteristic 5-5-5 tricyclic ring skeleton. To date, more than 70 derivatives have been isolated from nature. In this study, we applied heterologous expression, in vitro enzymatic reactions, and biotransformation to characterize the function of nine enzymes involved in the synthesis of anhydroarthrosporone and six novel hirsutanes. The elucidated biosynthesis involves oxidative modifications of the A-ring followed by structural diversification of the B- and C-rings. Most importantly, biosynthetic pathways provide crucial insights into the classification and organization of isolated hirsutanes. We successfully classified 69 natural hirsutanes into three groups based on their A-ring modification patterns. Our classification covered 92% of the natural hirsutanes. A comprehensive understanding of their biosynthesis will provide opportunities to isolate structurally diverse hirsutanes using genetic engineering techniques.</p>","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":"5 2","pages":"740-746"},"PeriodicalIF":8.5000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11862936/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACS Au","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/jacsau.4c00983","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/24 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Hirsutanes are mushroom-derived sesquiterpenes with a characteristic 5-5-5 tricyclic ring skeleton. To date, more than 70 derivatives have been isolated from nature. In this study, we applied heterologous expression, in vitro enzymatic reactions, and biotransformation to characterize the function of nine enzymes involved in the synthesis of anhydroarthrosporone and six novel hirsutanes. The elucidated biosynthesis involves oxidative modifications of the A-ring followed by structural diversification of the B- and C-rings. Most importantly, biosynthetic pathways provide crucial insights into the classification and organization of isolated hirsutanes. We successfully classified 69 natural hirsutanes into three groups based on their A-ring modification patterns. Our classification covered 92% of the natural hirsutanes. A comprehensive understanding of their biosynthesis will provide opportunities to isolate structurally diverse hirsutanes using genetic engineering techniques.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信