A novel skin cancer detection architecture using tangent rat swarm optimization algorithm enabled DenseNet.

IF 1.1 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Balashanmuga Vadivu P, Om Prakash Pg, Aravind Karrothu, Sriramakrishnan Gv
{"title":"A novel skin cancer detection architecture using tangent rat swarm optimization algorithm enabled DenseNet.","authors":"Balashanmuga Vadivu P, Om Prakash Pg, Aravind Karrothu, Sriramakrishnan Gv","doi":"10.1080/0954898X.2025.2452274","DOIUrl":null,"url":null,"abstract":"<p><p>This paper proposes a Tangent Rat Swarm Optimization (TRSO)-DenseNet for the detection of skin cancer to reduce the severity rate of cancer. Initially, the input image is pre-processed by employing a linear smoothing filter. The pre-processed image is transferred to skin lesion segmentation, where Mask-RCNN is utilized for segmenting the skin lesion. Then, image augmentation is performed using techniques such as vertical shifting, horizontal shifting, random rotation, brightness adjustment, blurring, and cropping. The augmented image is then fed into the feature extraction phase to identify statistical features, Haralick texture features, Convolutional Neural Network (CNN) features, Local Ternary Pattern (LTP), Histogram of Oriented Gradients (HOG), and Local Vector Pattern (LVP). Finally, the extracted features are fed into the skin cancer detection phase, where DenseNet is used to detect skin cancer. Here, DenseNet is structurally optimized by TRSO, which has the combination of the Tangent Search Algorithm (TSA) and Rat Swarm Optimizer (RSO). The TRSO-DenseNet model is implemented using MATLAB tool and analayzsed using the Society for Imaging Informatics in Medicine-International Skin Imaging Collaboration's (SIIM-ISIC) Melanoma Classification dataset. The Proposed model for skin cancer detection attained superior performance with an accuracy of 94.63%, TPR of 91.51%, and TNR of 92.46%.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-31"},"PeriodicalIF":1.1000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2025.2452274","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a Tangent Rat Swarm Optimization (TRSO)-DenseNet for the detection of skin cancer to reduce the severity rate of cancer. Initially, the input image is pre-processed by employing a linear smoothing filter. The pre-processed image is transferred to skin lesion segmentation, where Mask-RCNN is utilized for segmenting the skin lesion. Then, image augmentation is performed using techniques such as vertical shifting, horizontal shifting, random rotation, brightness adjustment, blurring, and cropping. The augmented image is then fed into the feature extraction phase to identify statistical features, Haralick texture features, Convolutional Neural Network (CNN) features, Local Ternary Pattern (LTP), Histogram of Oriented Gradients (HOG), and Local Vector Pattern (LVP). Finally, the extracted features are fed into the skin cancer detection phase, where DenseNet is used to detect skin cancer. Here, DenseNet is structurally optimized by TRSO, which has the combination of the Tangent Search Algorithm (TSA) and Rat Swarm Optimizer (RSO). The TRSO-DenseNet model is implemented using MATLAB tool and analayzsed using the Society for Imaging Informatics in Medicine-International Skin Imaging Collaboration's (SIIM-ISIC) Melanoma Classification dataset. The Proposed model for skin cancer detection attained superior performance with an accuracy of 94.63%, TPR of 91.51%, and TNR of 92.46%.

一种基于切线鼠群优化算法的新型皮肤癌检测架构实现了DenseNet。
本文提出了一种切线鼠群优化(TRSO)-DenseNet用于皮肤癌的检测,以降低癌症的严重程度。首先,使用线性平滑滤波器对输入图像进行预处理。将预处理后的图像转移到皮肤病变分割中,利用Mask-RCNN对皮肤病变进行分割。然后,使用垂直移动、水平移动、随机旋转、亮度调整、模糊和裁剪等技术进行图像增强。然后将增强后的图像输入到特征提取阶段,以识别统计特征、哈拉里克纹理特征、卷积神经网络(CNN)特征、局部三元模式(LTP)、定向梯度直方图(HOG)和局部向量模式(LVP)。最后,将提取的特征输入到皮肤癌检测阶段,在此阶段使用DenseNet检测皮肤癌。在这里,DenseNet通过TRSO进行结构优化,TRSO结合了切线搜索算法(TSA)和鼠群优化器(RSO)。TRSO-DenseNet模型使用MATLAB工具实现,并使用医学成像信息学学会-国际皮肤成像协作组织(SIIM-ISIC)黑色素瘤分类数据集进行分析。所提出的皮肤癌检测模型的准确率为94.63%,TPR为91.51%,TNR为92.46%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Network-Computation in Neural Systems
Network-Computation in Neural Systems 工程技术-工程:电子与电气
CiteScore
3.70
自引率
1.30%
发文量
22
审稿时长
>12 weeks
期刊介绍: Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas: Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function. Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications. Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis. Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals. Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET. Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信